cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007587 12-gonal (or dodecagonal) pyramidal numbers: a(n) = n*(n+1)*(10*n-7)/6.

Original entry on oeis.org

0, 1, 13, 46, 110, 215, 371, 588, 876, 1245, 1705, 2266, 2938, 3731, 4655, 5720, 6936, 8313, 9861, 11590, 13510, 15631, 17963, 20516, 23300, 26325, 29601, 33138, 36946, 41035, 45415, 50096, 55088, 60401, 66045, 72030, 78366, 85063, 92131, 99580, 107420, 115661
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 12, 21, 10, 0, 0, 0, ...] = (1, 13, 46, 110, ...). - Gary W. Adamson, Nov 28 2007
This sequence is related to A000566 by a(n) = n*A000566(n) - Sum_{i=0..n-1} A000566(i) and this is the case d=5 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/6. - Bruno Berselli, Oct 18 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093645 ((10, 1) Pascal, column m=3). Partial sums of A051624.
Cf. A000566.
See similar sequences listed in A237616.

Programs

  • GAP
    List([0..45], n-> n*(n+1)*(10*n-7)/6); # G. C. Greubel, Aug 30 2019
  • Magma
    [ n eq 1 select 0 else Self(n-1)+(n-1)*(5*n-9): n in [1..45] ]; // Klaus Brockhaus, Nov 20 2008
    
  • Maple
    A007587:=n->n*(n+1)*(10*n-7)/6: seq(A007587(n), n=0..50); # Wesley Ivan Hurt, Oct 23 2014
  • Mathematica
    CoefficientList[Series[x(1+9x)/(1-x)^4, {x,0,45}], x] (* Vincenzo Librandi, Jun 20 2013 *)
    Table[n(n+1)(10n-7)/6,{n,0,50}] (* Harvey P. Dale, Nov 13 2013 *)
  • PARI
    a(n)=if(n,([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,4,-6,4]^n*[0;1;13;46])[1,1],0) \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    vector(45, n, n*(n-1)*(10*n-17)/6) \\ G. C. Greubel, Aug 30 2019
    
  • Sage
    [n*(n+1)*(10*n-7)/6 for n in (0..45)] # G. C. Greubel, Aug 30 2019
    

Formula

a(n) = (10*n-7)*binomial(n+1, 2)/3.
G.f.: x*(1+9*x)/(1-x)^4.
a(n) = Sum_{k=0..n} k*(5*k-4). - Klaus Brockhaus, Nov 20 2008
a(n) = Sum_{i=0..n-1} (n-i)*(10*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 23 2014
E.g.f.: exp(x)*x*(6 + 33*x + 10*x^2)/6. - Elmo R. Oliveira, Aug 04 2025