cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007663 Fermat quotients: (2^(p-1)-1)/p, where p=prime(n).

Original entry on oeis.org

1, 3, 9, 93, 315, 3855, 13797, 182361, 9256395, 34636833, 1857283155, 26817356775, 102280151421, 1497207322929, 84973577874915, 4885260612740877, 18900352534538475, 1101298153654301589, 16628050996019877513, 64689951820132126215, 3825714619033636628817
Offset: 2

Views

Author

N. J. A. Sloane, Sep 19 1994

Keywords

Comments

The only terms that are squares are a(2) = 1 and a(4) = 9. - Nick Hobson, May 20 2007
From Jonathan Sondow, Jul 19 2010: (Start)
a(n) == 0 (mod 3) if n > 2, since p = prime(n) > 3
and 0 = (-1)^(p-1)-1 == 2^(p-1)-1 (mod 3). (End)
p is in A001220 if and only if p | (2^(p-1)-1)/p, i.e., a(n) is divisible by prime(n). - Felix Fröhlich, Jun 20 2014
In general, every prime p that is 1 mod q-1 will create a numerator that is 0 mod q via Fermat's Little Theorem, meaning every p with this property (except q) will have a Fermat quotient divisible by q. - Roderick MacPhee, May 12 2017

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See pp. 47, 308.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 105.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 70.

Crossrefs

Programs

Formula

From Alexander Adamchuk, Oct 01 2006: (Start)
a(n) = 3*A096060(n) for n > 2.
a(n) = 3*A001045(prime(n)-1)/prime(n) for n > 1. (End)
a(n) = Sum_{i=0..(p-3)/2} 2^i*(p-i-2)!/((i+1)!*(p-2*(i+1))!) where p = prime(n), for n >= 2. - Vladimir Pletser, Jan 26 2023