A007663 Fermat quotients: (2^(p-1)-1)/p, where p=prime(n).
1, 3, 9, 93, 315, 3855, 13797, 182361, 9256395, 34636833, 1857283155, 26817356775, 102280151421, 1497207322929, 84973577874915, 4885260612740877, 18900352534538475, 1101298153654301589, 16628050996019877513, 64689951820132126215, 3825714619033636628817
Offset: 2
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See pp. 47, 308.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 105.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 70.
Links
- T. D. Noe, Table of n, a(n) for n=2..100
- Nick Hobson, Solution to puzzle 158: Fermat squares.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
- Andrei K. Svinin, On some class of sums, arXiv:1610.05387 [math.CO], 2016-2017. See p. 11.
- H. S. Vandiver, Fermat's Quotients And Related Arithmetic Functions, PNAS 1945 31 (1) pp. 55-60.
- H. S. Vandiver, New Types Of Congruences Involving Bernoulli Numbers and Fermat's Quotient, PNAS 1948 34 (3) pp. 103-110.
- H. S. Vandiver, On Congruences Which Relate The Fermat And Wilson Quotients To The Bernoulli Numbers, PNAS 1949 35 (6) pp. 332-337.
Programs
-
Maple
A007663:= n-> map (p-> (2^(p-1)-1)/p, ithprime(n)): seq (A007663(n), n=2..20); # Jani Melik, Jan 24 2011
-
Mathematica
A007663[n_Integer?Positive]:=(-1+2^(Prime[n]-1))/Prime[n]/;(n>1) (* Enrique Pérez Herrero, Sep 08 2010 *) Table[(2^(n-1)-1)/n,{n,Prime[Range[2,20]]}] (* Harvey P. Dale, Nov 07 2016 *)
-
PARI
forprime(p=3, 100, print1((2^(p-1)-1)/p ", ")) \\ Satish Bysany, Mar 11 2017
Formula
From Alexander Adamchuk, Oct 01 2006: (Start)
a(n) = 3*A096060(n) for n > 2.
a(n) = 3*A001045(prime(n)-1)/prime(n) for n > 1. (End)
a(n) = Sum_{i=0..(p-3)/2} 2^i*(p-i-2)!/((i+1)!*(p-2*(i+1))!) where p = prime(n), for n >= 2. - Vladimir Pletser, Jan 26 2023
Comments