cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A130912 Fermat quotients, mod p: ((2^(p-1) - 1)/p) mod p = A007663(n) mod p.

Original entry on oeis.org

1, 3, 2, 5, 3, 13, 3, 17, 1, 6, 1, 23, 25, 44, 36, 8, 36, 10, 2, 56, 19, 48, 6, 57, 92, 59, 13, 67, 83, 18, 17, 53, 30, 96, 56, 82, 67, 47, 3, 50, 148, 50, 104, 175, 135, 109, 189, 201, 68, 7, 26, 142, 247, 225, 128, 260, 109, 70, 74, 58, 78, 294, 175, 120, 175, 139, 153
Offset: 2

Views

Author

Gary W. Adamson, Jun 08 2007

Keywords

Examples

			a(4) = 2 = 9 mod 7 where A007663(4) = 9.
The Fermat prime(base 2) for 7 = 9 = (2^6 - 1)/7. Then 9 mod 7 = 2.
		

References

  • Paulo Ribenboim, "The Little Book of Bigger Primes", Springer-Verlag, 2004, p. 232.

Crossrefs

Cf. A007663.

Programs

  • Maple
    a := 2 : for n from 2 to 120 do p := ithprime(n) ; fq := (a^(p-1)-1)/p ; printf("%d,",fq mod p) ; od: # R. J. Mathar, Oct 28 2008
  • Mathematica
    Mod[(2^(#-1)-1)/#,#]&/@Prime[Range[2,70]] (* Harvey P. Dale, Mar 31 2013 *)
  • PARI
    forprime(p=3, 1e3, my(t=(2^(p-1)-1)/p); print1(t%p, ", ")); \\ Felix Fröhlich, Jul 26 2014

Formula

Fermat quotients mod p = A007663: (1, 3, 9, 93, 315, ...) mod p; where the Fermat quotients for base 2 = (2^(p-1) - 1). Applies to the odd primes.

Extensions

More terms from R. J. Mathar, Oct 28 2008

A343763 Common prime factors of A007663(183)/1093 and A007663(490)/3511.

Original entry on oeis.org

3, 7, 79, 2731, 8191, 121369, 22366891
Offset: 1

Views

Author

Felix Fröhlich, Apr 28 2021

Keywords

Comments

The sequence is complete (cf. Michon).
Are these primes necessarily prime factors of A007663(i)/p when p = prime(i) is a Wieferich prime (A001220)?
Note the following curious observation: 3 * 7 * 79 * 2731 * 8191 * 121369 * 22366891 = 100743818301219097892181. That number is a repdigit in bases 4 and 64 and undulating in bases 2, 8, 128, 2048 and 8192. Compare that to observations from John Blythe Dobson (cf. Dobson).

Crossrefs

Programs

  • PARI
    fq(n) = (2^(n-1)-1)/n
    my(x=fq(1093)/1093, y=fq(3511)/3511); forprime(p=1, , if(Mod(x, p)==0 && Mod(y, p)==0, print1(p, ", ")))

A346431 Primes p such that A007663(i) is divisible by Product_{k=1..7} A343763(k), where i is the index of p in A000040.

Original entry on oeis.org

157, 313, 547, 859, 937, 1093, 1171, 1249, 1327, 1483, 1873, 1951, 2029, 2341, 2887, 3121, 3433, 3511, 3823, 4057, 4447, 4603, 4759, 4993, 5227, 5851, 6007, 6163, 6397, 6553, 6709, 7177, 7333, 7411, 7489, 7723, 7879, 8269, 8581, 8737, 8893, 8971, 9049, 9127
Offset: 1

Views

Author

Felix Fröhlich, Jul 18 2021

Keywords

Comments

Differs from A142159 in that 79, 2731, 8191, ... are not in this sequence.
Includes the two known Wieferich primes 1093 and 3511 (cf. A001220).
Is this a supersequence of A001220, i.e., are all Wieferich primes in the sequence?
Is p-1 always divisible by 78 = 2 * 3 * 13?
For the initial primes p in this sequence, p-1 has some interesting digit patterns in various bases, as illustrated in the following table:
p | b | base-b expansion of p-1
--------------------------------------
157 | 5 | 1111
313 | 5 | 2222
547 | 3 | 202020
547 | 4 | 20202
547 | 5 | 4141
547 | 9 | 666
547 | 16 | 222
859 | 2 | 1101011010
937 | 3 | 1021200 (nearly palindromic)
937 | 4 | 32220 (nearly palindromic)
937 | 5 | 12221
1093 | 2 | 10001000100 (periodic)
1093 | 3 | 1111110 (nearly palindromic/repdigit)
1093 | 4 | 101010
1093 | 5 | 13332 (nearly palindromic)
1093 | 16 | 444
1171 | 2 | 10010010010 (periodic)
1171 | 5 | 14140 (nearly palindromic and periodic)
1171 | 8 | 2222
1249 | 3 | 1201020 (nearly palindromic)
1249 | 5 | 14443 (nearly palindromic)
1327 | 5 | 20301 (nearly palindromic)

Examples

			(2^(157-1)-1)/157 is divisible by 3 * 7 * 79 * 2731 * 8191 * 121369 * 22366891, so 157 is a term of the sequence.
		

Crossrefs

Programs

  • PARI
    fq(n) = (2^(n-1)-1)/n
    my(prd=3*7*79*2731*8191*121369*22366891); forprime(p=1, , if(Mod(fq(p), prd)==0, print1(p, ", ")))

A001045 Jacobsthal sequence (or Jacobsthal numbers): a(n) = a(n-1) + 2*a(n-2), with a(0) = 0, a(1) = 1; also a(n) = nearest integer to 2^n/3.

Original entry on oeis.org

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531, 5726623061, 11453246123
Offset: 0

Views

Author

Keywords

Comments

Don Knuth points out (personal communication) that Jacobsthal may never have seen the actual values of this sequence. However, Horadam uses the name "Jacobsthal sequence", such an important sequence needs a name, and there is a law that says the name for something should never be that of its discoverer. - N. J. A. Sloane, Dec 26 2020
Number of ways to tile a 3 X (n-1) rectangle with 1 X 1 and 2 X 2 square tiles.
Also, number of ways to tile a 2 X (n-1) rectangle with 1 X 2 dominoes and 2 X 2 squares. - Toby Gottfried, Nov 02 2008
Also a(n) counts each of the following four things: n-ary quasigroups of order 3 with automorphism group of order 3, n-ary quasigroups of order 3 with automorphism group of order 6, (n-1)-ary quasigroups of order 3 with automorphism group of order 2 and (n-2)-ary quasigroups of order 3. See the McKay-Wanless (2008) paper. - Ian Wanless, Apr 28 2008
Also the number of ways to tie a necktie using n + 2 turns. So three turns make an "oriental", four make a "four in hand" and for 5 turns there are 3 methods: "Kelvin", "Nicky" and "Pratt". The formula also arises from a special random walk on a triangular grid with side conditions (see Fink and Mao, 1999). - arne.ring(AT)epost.de, Mar 18 2001
Also the number of compositions of n + 1 ending with an odd part (a(2) = 3 because 3, 21, 111 are the only compositions of 3 ending with an odd part). Also the number of compositions of n + 2 ending with an even part (a(2) = 3 because 4, 22, 112 are the only compositions of 4 ending with an even part). - Emeric Deutsch, May 08 2001
Arises in study of sorting by merge insertions and in analysis of a method for computing GCDs - see Knuth reference.
Number of perfect matchings of a 2 X n grid upon replacing unit squares with tetrahedra (C_4 to K_4):
o----o----o----o...
| \/ | \/ | \/ |
| /\ | /\ | /\ |
o----o----o----o... - Roberto E. Martinez II, Jan 07 2002
Also the numerators of the reduced fractions in the alternating sum 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 + ... - Joshua Zucker, Feb 07 2002
Also, if A(n), B(n), C(n) are the angles of the n-orthic triangle of ABC then A(1) = Pi - 2*A, A(n) = s(n)*Pi + (-2)^n*A where s(n) = (-1)^(n-1) * a(n) [1-orthic triangle = the orthic triangle of ABC, n-orthic triangle = the orthic triangle of the (n-1)-orthic triangle]. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Jun 05 2002
Also the number of words of length n+1 in the two letters s and t that reduce to the identity 1 by using the relations sss = 1, tt = 1 and stst = 1. The generators s and t and the three stated relations generate the group S3. - John W. Layman, Jun 14 2002
Sums of pairs of consecutive terms give all powers of 2 in increasing order. - Amarnath Murthy, Aug 15 2002
Excess clockwise moves (over counterclockwise) needed to move a tower of size n to the clockwise peg is -(-1)^n*(2^n - (-1)^n)/3; a(n) is its unsigned version. - Wouter Meeussen, Sep 01 2002
Also the absolute value of the number represented in base -2 by the string of n 1's, the negabinary repunit. The Mersenne numbers (A000225 and its subsequences) are the binary repunits. - Rick L. Shepherd, Sep 16 2002
Note that 3*a(n) + (-1)^n = 2^n is significant for Pascal's triangle A007318. It arises from a Jacobsthal decomposition of Pascal's triangle illustrated by 1 + 7 + 21 + 35 + 35 + 21 + 7 + 1 = (7 + 35 + 1) + (1 + 35 + 7) + (21 + 21) = 43 + 43 + 42 = 3a(7) - 1; 1 + 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1 = (1 + 56 + 28) + (28 + 56 + 1) + (8 + 70 + 8) = 85 + 85 + 86 = 3a(8)+1. - Paul Barry, Feb 20 2003
Number of positive integers requiring exactly n signed bits in the nonadjacent form representation.
Equivalently, number of length-(n-1) words with letters {0, 1, 2} where no two consecutive letters are nonzero, see example and fxtbook link. - Joerg Arndt, Nov 10 2012
Counts walks between adjacent vertices of a triangle. - Paul Barry, Nov 17 2003
Every amphichiral rational knot written in Conway notation is a palindromic sequence of numbers, not beginning or ending with 1. For example, for 4 <= n <= 12, the amphichiral rational knots are: 2 2, 2 1 1 2, 4 4, 3 1 1 3, 2 2 2 2, 4 1 1 4, 3 1 1 1 1 3, 2 3 3 2, 2 1 2 2 1 2, 2 1 1 1 1 1 1 2, 6 6, 5 1 1 5, 4 2 2 4, 3 3 3 3, 2 4 4 2, 3 2 1 1 2 3, 3 1 2 2 1 3, 2 2 2 2 2 2, 2 2 1 1 1 1 2 2, 2 1 2 1 1 2 1 2, 2 1 1 1 1 1 1 1 1 2. For the number of amphichiral rational knots for n=2*k (k=1, 2, 3, ...), we obtain the sequence 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, ... - Slavik Jablan, Dec 26 2003
a(n+2) counts the binary sequences of total length n made up of codewords from C = {0, 10, 11}. - Paul Barry, Jan 23 2004
Number of permutations with no fixed points avoiding 231 and 132.
The n-th entry (n > 1) of the sequence is equal to the 2,2-entry of the n-th power of the unnormalized 4 X 4 Haar matrix: [1 1 1 0 / 1 1 -1 0 / 1 1 0 1 / 1 1 0 -1]. - Simone Severini, Oct 27 2004
a(n) is the number of Motzkin (n+1)-sequences whose flatsteps all occur at level 1 and whose height is less than or equal to 2. For example, a(4) = 5 counts UDUFD, UFDUD, UFFFD, UFUDD, UUDFD. - David Callan, Dec 09 2004
a(n+1) gives row sums of A059260. - Paul Barry, Jan 26 2005
If (m + n) is odd, then 3*(a(m) + a(n)) is always of the form a^2 + 2*b^2, where a and b both equal powers of 2; consequently every factor of (a(m) + a(n)) is always of the form a^2 + 2*b^2. - Matthew Vandermast, Jul 12 2003
Number of "0,0" in f_{n+1}, where f_0 = "1" and f_{n+1} = a sequence formed by changing all "1"s in f_n to "1,0" and all "0"s in f_n to "0,1". - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
All prime Jacobsthal numbers A049883[n] = {3, 5, 11, 43, 683, 2731, 43691, ...} have prime indices except for a(4) = 5. All prime Jacobsthal numbers with prime indices (all but a(4) = 5) are of the form (2^p + 1)/3 - the Wagstaff primes A000979[n]. Indices of prime Jacobsthal numbers are listed in A107036[n] = {3, 4, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, ...}. For n>1 A107036[n] = A000978[n] Numbers n such that (2^n + 1)/3 is prime. - Alexander Adamchuk, Oct 03 2006
Correspondence: a(n) = b(n)*2^(n-1), where b(n) is the sequence of the arithmetic means of previous two terms defined by b(n) = 1/2*(b(n-1) + b(n-2)) with initial values b(0) = 0, b(1) = 1; the g.f. for b(n) is B(x) := x/(1-(x^1+x^2)/2), so the g.f. A(x) for a(n) satisfies A(x) = B(2*x)/2. Because b(n) converges to the limit lim (1-x)*B(x) = 1/3*(b(0) + 2*b(1)) = 2/3 (for x --> 1), it follows that a(n)/2^(n-1) also converges to 2/3 (see also A103770). - Hieronymus Fischer, Feb 04 2006
Inverse: floor(log_2(a(n))) = n - 2 for n >= 2. Also: log_2(a(n) + a(n-1)) = n - 1 for n >= 1 (see also A130249). Characterization: x is a Jacobsthal number if and only if there is a power of 4 (= c) such that x is a root of p(x) = 9*x*(x-c) + (c-1)*(2*c+1) (see also the indicator sequence A105348). - Hieronymus Fischer, May 17 2007
This sequence counts the odd coefficients in the expansion of (1 + x + x^2)^(2^n - 1), n >= 0. - Tewodros Amdeberhan (tewodros(AT)math.mit.edu), Oct 18 2007, Jan 08 2008
2^(n+1) = 2*A005578(n) + 2*a(n) + 2*A000975(n-1). Let A005578(n), a(n), A000975(n-1) = triangle (a, b, c). Then ((S-c), (S-b), (S-a)) = (A005578(n-1), a(n-1), A000975(n-2)). Example: (a, b, c) = (11, 11, 10) = (A005578(5), a(5), A000975(4)). Then ((S-c), (S-b), (S-a)) = (6, 5, 5) = (A005578(4), a(4), A000975(3)). - Gary W. Adamson, Dec 24 2007
Sequence is identical to the absolute values of its inverse binomial transform. A similar result holds for [0,A001045*2^n]. - Paul Curtz, Jan 17 2008
From a(2) on (i.e., 1, 3, 5, 11, 21, ...) also: least odd number such that the subsets of {a(2), ..., a(n)} sum to 2^(n-1) different values, cf. A138000 and A064934. It is interesting to note the pattern of numbers occurring (or not occurring) as such a sum (A003158). - M. F. Hasler, Apr 09 2008
a(n) is the term (5, 1) of n-th power of the 5 X 5 matrix shown in A121231. - Gary W. Adamson, Oct 03 2008
A147612(a(n)) = 1. - Reinhard Zumkeller, Nov 08 2008
a(n+1) = Sum(A153778(i): 2^n <= i < 2^(n+1)). - Reinhard Zumkeller, Jan 01 2009
It appears that a(n) is also the number of integers between 2^n and 2^(n+1) that are divisible by 3 with no remainder. - John Fossaceca (john(AT)fossaceca.net), Jan 31 2009
Number of pairs of consecutive odious (or evil) numbers between 2^(n+1) and 2^(n+2), inclusive. - T. D. Noe, Feb 05 2009
Equals eigensequence of triangle A156319. - Gary W. Adamson, Feb 07 2009
A three-dimensional interpretation of a(n+1) is that it gives the number of ways of filling a 2 X 2 X n hole with 1 X 2 X 2 bricks. - Martin Griffiths, Mar 28 2009
Starting with offset 1 = INVERTi transform of A002605: (1, 2, 6, 16, 44, ...). - Gary W. Adamson, May 12 2009
Convolved with (1, 2, 2, 2, ...) = A000225: (1, 3, 7, 15, 31, ...). - Gary W. Adamson, May 23 2009
The product of a pair of successive terms is always a triangular number. - Giuseppe Ottonello, Jun 14 2009
Let A be the Hessenberg matrix of order n, defined by: A[1, j] = 1, A[i, i] := -2, A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = (-1)^(n-1)*det(A). - Milan Janjic, Jan 26 2010
Let R denote the irreducible representation of the symmetric group S_3 of dimension 2, and let s and t denote respectively the sign and trivial irreducible representations of dimension 1. The decomposition of R^n into irreducible representations consists of a(n) copies of R and a(n-1) copies of each of s and t. - Andrew Rupinski, Mar 12 2010
As a fraction: 1/88 = 0.0113636363... or 1/9898 = 0.00010103051121... - Mark Dols, May 18 2010
Starting with "1" = the INVERT transform of (1, 0, 2, 0, 4, 0, 8, ...); e.g., a(7) = 43 = (1, 1, 1, 3, 5, 11, 21) dot (8, 0, 4, 0, 2, 0, 1) = (8 + 4 + 10 + 21) = 43. - Gary W. Adamson, Oct 28 2010
Rule 28 elementary cellular automaton (A266508) generates this sequence. - Paul Muljadi, Jan 27 2011
This is a divisibility sequence. - Michael Somos, Feb 06 2011
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(6,2) =
(0 0 1)
(0 2 0)
(2 0 1).
Then a(n+1) = (Trace(U^n))/3, a(n+1) = ((U^n){3, 3})/3, a(n) = ((U^n){1, 3})/3 and a(n) = ((U^(n+1))_{1, 1})/2. (End)
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 2, 3*a(n-1) equals the number of 3-colored compositions of n with all parts greater than or equal to 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
This sequence is connected with the Collatz problem. We consider the array T(i, j) where the i-th row gives the parity trajectory of i, for example for i = 6, the infinite trajectory is 6 -> 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 -> 4 -> 2 -> 1 -> 4 -> 2 -> 1... and T(6, j) = [0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, ..., 1, 0, 0, 1, ...]. Now, we consider the sum of the digits "1" of each column. We obtain the sequence a(n) = Sum_{k = 1..2^n} T(k, n) = Sum {k = 1..2^n} digits "1" of the n-th column. Because a(n) + a(n+1) = 2^n, then a(n+1) = Number of digits "0" among the 2^n elements of the n-th column. - _Michel Lagneau, Jan 11 2012
3!*a(n-1) is apparently the trace of the n-th power of the adjacency matrix of the complete 3-graph, a 3 X 3 matrix with diagonal elements all zero and off-diagonal all ones. The off-diagonal elements for the n-th power are all equal to a(n) while each diagonal element seems to be a(n) + 1 for an even power and a(n) - 1 for an odd. These are related to the lengths of closed paths on the graph (see Delfino and Viti's paper). - Tom Copeland, Nov 06 2012
From Paul Curtz, Dec 11 2012: (Start)
2^n * a(-n) = (-1)^(n-1) * a(n), which extends the sequence to negative indices: ..., -5/16, 3/8, -1/4, 1/2, 0, 1, 1, 3, 5, ...
The "autosequence" property with respect to the binomial transform mentioned in my comment of Jan 17 2008 is still valid if the term a(-1) is added to the array of the sequence and its iterated higher-order differences in subsequent rows:
0 1/2 1/2 3/2 5/2 11/2 ...
1/2 0 1 1 3 5 ...
-1/2 1 0 2 2 6 ...
3/2 -1 2 0 4 4 ...
-5/2 3 -2 4 0 8 ...
11/2 -5 6 -4 8 0 ...
The main diagonal in this array contains 0's. (End)
Assign to a triangle T(n, 0) = 1 and T(n+1, 1) = n; T(r, c) = T(r-1, c-1) + T(r-1, c-2) + T(r-2, c-2). Then T(n+1, n) - T(n, n) = a(n). - J. M. Bergot, May 02 2013
a(n+1) counts clockwise walks on n points on a circle that take steps of length 1 and 2, return to the starting point after two full circuits, and do not duplicate any steps (USAMO 2013, problem 5). - Kiran S. Kedlaya, May 11 2013
Define an infinite square array m by m(n, 0) = m(0, n) = a(n) in top row and left column and m(i, j) = m(i, j-1) + m(i-1, j-1) otherwise, then m(n+1, n+1) = 3^(n-1). - J. M. Bergot, May 10 2013
a(n) is the number of compositions (ordered partitions) of n - 1 into one sort of 1's and two sorts of 2's. Example: the a(4) = 5 compositions of 3 are 1 + 1 + 1, 1 + 2, 1 + 2', 2 + 1 and 2' + 1. - Bob Selcoe, Jun 24 2013
Without 0, a(n)/2^n equals the probability that n will occur as a partial sum in a randomly-generated infinite sequence of 1's and 2's. The limiting ratio is 2/3. - Bob Selcoe, Jul 04 2013
Number of conjugacy classes of Z/2Z X Z/2Z in GL(2,2^(n+1)). - Jared Warner, Aug 18 2013
a(n) is the top left entry of the (n-1)-st power of the 3 X 3 matrix [1, 1, 1, 1, 0, 0, 1, 0, 0]. a(n) is the top left entry of the (n+1)-st power of any of the six 3 X 3 matrices [0, 1, 0; 1, 1, 1; 0, 1, 0], [0, 1, 1; 0, 1, 1; 1, 1, 0], [0, 0, 1; 1, 1, 1; 1, 1, 0], [0, 1, 1; 1, 0, 1; 0, 1, 1], [0, 0, 1; 0, 0, 1; 1, 1, 1] or [0, 1, 0; 1, 0, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
This is the only integer sequence from the family of homogeneous linear recurrence of order 2 given by a(n) = k*a(n-1) + t*a(n-2) with positive integer coefficients k and t and initial values a(0) = 0 and a(1) = 1 whose ratio a(n+1)/a(n) converges to 2 as n approaches infinity. - Felix P. Muga II, Mar 14 2014
This is the Lucas sequence U(1, -2). - Felix P. Muga II, Mar 21 2014
sqrt(a(n+1) * a(n-1)) -> a(n) + 3/4 if n is even, and -> a(n) - 3/4 if n is odd, for n >= 2. - Richard R. Forberg, Jun 24 2014
a(n+1) counts closed walks on the end vertices of P_3 containing one loop at the middle vertex. a(n-1) counts closed walks on the middle vertex of P_3 containing one loop at that vertex. - David Neil McGrath, Nov 07 2014
From César Eliud Lozada, Jan 21 2015: (Start)
Let P be a point in the plane of a triangle ABC (with sides a, b, c) and barycentric coordinates P = [x:y:z]. The Complement of P with respect to ABC is defined to be Complement(P) = [b*y + c*z : c*z + a*x : a*x + b*y].
Then, for n >= 1, Complement(Complement(...(Complement(P))..)) = (n times) =
[2*a(n-1)*a*x + (2*a(n-1) - (-1)^n)*(b*y + c*z):
2*a(n-1)*b*y + (2*a(n-1) - (-1)^n)*(c*z + a*x):
2*a(n-1)*c*z + (2*a(n-1) - (-1)^n)*(a*x + b*y)]. (End)
a(n) (n >= 2) is the number of induced hypercubes of the Fibonacci cube Gamma(n-2). See p. 513 of the Klavzar reference. Example: a(5) = 11. Indeed, the Fibonacci cube Gamma(3) is <>- (cycle C(4) with a pendant edge) and the hypercubes are: 5 vertices, 5 edges, and 1 square. - Emeric Deutsch, Apr 07 2016
If the sequence of points {P_i(x_i, y_i)} on the cubic y = a*x^3 + b*x^2 + c*x + d has the property that the segment P_i(x_i, y_i) P_i+1(x_i+1, y_i+1) is always tangent to the cubic at P_i+1(x_i+1, y_i+1) then a(n) = -2^n*a/b*(x_(n+1)-(-1/2)^n*x_1). - Michael Brozinsky, Aug 01 2016
With the quantum integers defined by [n+1]A000225%20are%20given%20by%20q%20=%20sqrt(2).%20Cf.%20A239473.%20-%20_Tom%20Copeland">q = (q^(n+1) - q^(-n-1)) / (q - q^(-1)), the Jacobsthal numbers are a(n+1) = (-1)^n*q^n [n+1]_q with q = i * sqrt(2) for i^2 = -1, whereas the signed Mersenne numbers A000225 are given by q = sqrt(2). Cf. A239473. - _Tom Copeland, Sep 05 2016
Every positive integer has a unique expression as a sum of Jacobsthal numbers in which the index of the smallest summand is odd, with a(1) and a(2) both allowed. See the L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr. reference. - Ira M. Gessel, Dec 31 2016. See A280049 for these expansions. - N. J. A. Sloane, Dec 31 2016
For n > 0, a(n) equals the number of ternary words of length n-1 in which 0 and 1 avoid runs of odd lengths. - Milan Janjic, Jan 08 2017
For n > 0, a(n) equals the number of orbits of the finite group PSL(2,2^n) acting on subsets of size 4 for the 2^n+1 points of the projective line. - Paul M. Bradley, Jan 31 2017
For n > 1, number of words of length n-2 over alphabet {1,2,3} such that no odd letter is followed by an odd letter. - Armend Shabani, Feb 17 2017
Also, the decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 678", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. See A283641. - Robert Price, Mar 12 2017
Also the number of independent vertex sets and vertex covers in the 2 X (n-2) king graph. - Eric W. Weisstein, Sep 21 2017
From César Eliud Lozada, Dec 14 2017: (Start)
Let T(0) be a triangle and let T(1) be the medial triangle of T(0), T(2) the medial triangle of T(1) and, in general, T(n) the medial triangle of T(n-1). The barycentric coordinates of the first vertex of T(n) are [2*a(n-1)/a(n), 1, 1], for n > 0.
Let S(0) be a triangle and let S(1) be the antimedial triangle of S(0), S(2) the antimedial triangle of S(1) and, in general, S(n) the antimedial triangle of S(n-1). The barycentric coordinates of the first vertex of S(n) are [-a(n+1)/a(n), 1, 1], for n > 0. (End)
a(n) is also the number of derangements in S_{n+1} with empty peak set. - Isabella Huang, Apr 01 2018
For n > 0, gcd(a(n), a(n+1)) = 1. - Kengbo Lu, Jul 27 2020
Number of 2-compositions of n+1 with 1 not allowed as a part; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
The number of Hamiltonian paths of the flower snark graph of even order 2n > 2 is 12*a(n-1). - Don Knuth, Dec 25 2020
When set S = {1, 2, ..., 2^n}, n>=0, then the largest subset T of S with the property that if x is in T, then 2*x is not in T, has a(n+1) elements. For example, for n = 4, #S = 16, a(5) = 11 with T = {1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16} (see Hassan Tarfaoui link, Concours Général 1991). - Bernard Schott, Feb 14 2022
a(n) is the number of words of length n over a binary alphabet whose position in the lexicographic order is one more than a multiple of three. a(3) = 3: aaa, abb, bba. - Alois P. Heinz, Apr 13 2022
Named by Horadam (1988) after the German mathematician Ernst Jacobsthal (1882-1965). - Amiram Eldar, Oct 02 2023
Define the sequence u(n) = (u(n-1) + u(n-2))/u(n-3) with u(0) = 0, u(1) = 1, u(2) = u(3) = -1. Then u(4*n) = -1 + (-1)^n/a(n+1), u(4*n+1) = 2 - (-1)^n/a(n+1), u(4*n+2) = u(4*n+3) = -1. For example, a(3) = 3 and u(8) = -2/3, u(9) = 5/3, u(10) = u(11) = -1. - Michael Somos, Oct 24 2023
From Miquel A. Fiol, May 25 2024: (Start)
Also, a(n) is the number of (3-color) states of a cycle (n+1)-pole C_{n+1} with n+1 terminals (or semiedges).
For instance, for n=3, the a(3)=3 states (3-coloring of the terminals) of C_4 are
a a a a a b
a a b b a b (End)
Also, with offset 1, the cogrowth sequence of the 6-element dihedral group D3. - Sean A. Irvine, Nov 04 2024

Examples

			a(2) = 3 because the tiling of the 3 X 2 rectangle has either only 1 X 1 tiles, or one 2 X 2 tile in one of two positions (together with two 1 X 1 tiles).
From _Joerg Arndt_, Nov 10 2012: (Start)
The a(6)=21 length-5 ternary words with no two consecutive letters nonzero are (dots for 0's)
[ 1]   [ . . . . ]
[ 2]   [ . . . 1 ]
[ 3]   [ . . . 2 ]
[ 4]   [ . . 1 . ]
[ 5]   [ . . 2 . ]
[ 6]   [ . 1 . . ]
[ 7]   [ . 1 . 1 ]
[ 8]   [ . 1 . 2 ]
[ 9]   [ . 2 . . ]
[10]   [ . 2 . 1 ]
[11]   [ . 2 . 2 ]
[12]   [ 1 . . . ]
[13]   [ 1 . . 1 ]
[14]   [ 1 . . 2 ]
[15]   [ 1 . 1 . ]
[16]   [ 1 . 2 . ]
[17]   [ 2 . . . ]
[18]   [ 2 . . 1 ]
[19]   [ 2 . . 2 ]
[20]   [ 2 . 1 . ]
[21]   [ 2 . 2 . ]
(End)
G.f. = x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 21*x^6 + 43*x^7 + 85*x^8 + 171*x^9 + ...
		

References

  • Jathan Austin and Lisa Schneider, Generalized Fibonacci sequences in Pythagorean triple preserving sequences, Fib. Q., 58:1 (2020), 340-350.
  • Thomas Fink and Yong Mao, The 85 ways to tie a tie, Fourth Estate, London, 1999; Die 85 Methoden eine Krawatte zu binden. Hoffmann und Kampe, Hamburg, 1999.
  • International Mathematical Olympiad 2001, Hong Kong Preliminary Selection Contest Problem #16.
  • Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007. See p. 80.
  • Ernst Erich Jacobsthal, Fibonaccische Polynome und Kreisteilungsgleichungen, Sitzungsber. Berliner Math. Gesell. 17 (1919-1920), 43-57.
  • Tanya Khovanova, "Coins and Logic", Chapter 6, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 73. ISBN: 0691182582, 978-0691182582.
  • Donald E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.3.1, Eq. 13.
  • Thomas Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 98.
  • Steven Roman, Introduction to Coding and Information Theory, Springer Verlag, 1996, 41-42.
  • P. D. Seymour and D. J. A. Welsh, Combinatorial applications of an inequality form statistical mechanics, Math. Proc. Camb. Phil. Soc. 77 (1975), 485-495. [Although Daykin et al. (1979) claim that the present sequence is studied in this article, it does not seem to be explicitly mentioned. Note that definition of log-convex in (3.1) is wrong. - N. J. A. Sloane, Dec 26 2020]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Robert M. Young, Excursions in Calculus, MAA, 1992, p. 239

Crossrefs

Partial sums of this sequence give A000975, where there are additional comments from B. E. Williams and Bill Blewett on the tie problem.
A002487(a(n)) = A000045(n).
Row sums of A059260, A156667 and A134317. Equals A026644(n-2)+1 for n > 1.
a(n) = A073370(n-1, 0), n >= 1 (first column of triangle).
Cf. A266508 (binary), A081857 (base 4), A147612 (characteristic function).
Cf. A049883 = primes in this sequence, A107036 = indices of primes, A129738.
Cf. A091084 (mod 10), A239473, A280049.
Bisections: A002450, A007583.
Cf. A077925 (signed version).

Programs

  • Haskell
    a001045 = (`div` 3) . (+ 1) . a000079
    a001045_list = 0 : 1 :
       zipWith (+) (map (2 *) a001045_list) (tail a001045_list)
    -- Reinhard Zumkeller, Mar 24 2013, Jan 05 2012, Feb 05 2011
    
  • Magma
    [n le 2 select n-1 else Self(n-1)+2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 27 2016
    
  • Maple
    A001045 := proc(n)
      (2^n-(-1)^n)/3 ;
    end proc: # R. J. Mathar, Dec 18 2012
  • Mathematica
    Jacob0[n_] := (2^n - (-1)^n)/3; Table[Jacob0[n], {n, 0, 33}] (* Robert G. Wilson v, Dec 05 2005 *)
    Array[(2^# - (-1)^#)/3 &, 33, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
    LinearRecurrence[{1, 2}, {0, 1}, 40] (* Harvey P. Dale, Nov 30 2011 *)
    CoefficientList[Series[x/(1 - x - 2 x^2), {x, 0, 34}], x] (* Robert G. Wilson v, Jul 21 2015 *)
    Table[(2^n - (-1)^n)/3, {n, 0, 20}] (* Eric W. Weisstein, Sep 21 2017 *)
    Table[Abs[QBinomial[n, 1, -2]], {n, 0, 35}] (* John Keith, Jan 29 2022 *)
  • Maxima
    a[0]:0$
    a[n]:=2^(n-1)-a[n-1]$
    A001045(n):=a[n]$
    makelist(A001045(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n) = (2^n - (-1)^n) / 3
    
  • PARI
    M=[1,1,0;1,0,1;0,1,1];for(i=0,34,print1((M^i)[2,1],",")) \\ Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 28 2005
    
  • PARI
    a=0; for(n=0,34,print1(a,", "); a=2*(a-n%2)+1) \\ K. Spage, Aug 22 2014
    
  • Python
    # A001045.py
    def A001045():
        a, b = 0, 1
        while True:
            yield a
            a, b = b, b+2*a
    sequence = A001045()
    [next(sequence) for i in range(20)] # David Radcliffe, Jun 26 2016
    
  • Python
    [(2**n-(-1)**n)//3 for n in range(40)] # Gennady Eremin, Mar 03 2022
  • Sage
    [lucas_number1(n, 1, -2) for n in range(34)]  # Zerinvary Lajos, Apr 22 2009
    # Alternatively:
    a = BinaryRecurrenceSequence(1,2)
    [a(n) for n in (0..34)] # Peter Luschny, Aug 29 2016
    

Formula

a(n) = 2^(n-1) - a(n-1). a(n) = 2*a(n-1) - (-1)^n = (2^n - (-1)^n)/3.
G.f.: x/(1 - x - 2*x^2) = x/((x+1)*(1-2*x)). Simon Plouffe in his 1992 dissertation
E.g.f.: (exp(2*x) - exp(-x))/3.
a(2*n) = 2*a(2*n-1)-1 for n >= 1, a(2*n+1) = 2*a(2*n)+1 for n >= 0. - Lee Hae-hwang, Oct 11 2002; corrected by Mario Catalani (mario.catalani(AT)unito.it), Dec 04 2002
Also a(n) is the coefficient of x^(n-1) in the bivariate Fibonacci polynomials F(n)(x, y) = x*F(n-1)(x, y) + y*F(n-2)(x, y), with y=2*x^2. - Mario Catalani (mario.catalani(AT)unito.it), Dec 04 2002
a(n) = Sum_{k=1..n} binomial(n, k)*(-1)^(n+k)*3^(k-1). - Paul Barry, Apr 02 2003
The ratios a(n)/2^(n-1) converge to 2/3 and every fraction after 1/2 is the arithmetic mean of the two preceding fractions. - Gary W. Adamson, Jul 05 2003
a(n) = U(n-1, i/(2*sqrt(2)))*(-i*sqrt(2))^(n-1) with i^2=-1. - Paul Barry, Nov 17 2003
a(n+1) = Sum_{k=0..ceiling(n/2)} 2^k*binomial(n-k, k). - Benoit Cloitre, Mar 06 2004
a(2*n) = A002450(n) = (4^n - 1)/3; a(2*n+1) = A007583(n) = (2^(2*n+1) + 1)/3. - Philippe Deléham, Mar 27 2004
a(n) = round(2^n/3) = (2^n + (-1)^(n-1))/3 so lim_{n->infinity} 2^n/a(n) = 3. - Gerald McGarvey, Jul 21 2004
a(n) = Sum_{k=0..n-1} (-1)^k*2^(n-k-1) = Sum_{k=0..n-1}, 2^k*(-1)^(n-k-1). - Paul Barry, Jul 30 2004
a(n+1) = Sum_{k=0..n} binomial(k, n-k)*2^(n-k). - Paul Barry, Oct 07 2004
a(n) = Sum_{k=0..n-1} W(n-k, k)*(-1)^(n-k)*binomial(2*k,k), W(n, k) as in A004070. - Paul Barry, Dec 17 2004
From Paul Barry, Jan 17 2005: (Start)
a(n) = Sum_{k=0..n} k*binomial(n-1, (n-k)/2)*(1+(-1)^(n+k))*floor((2*k+1)/3).
a(n+1) = Sum_{k=0..n} k*binomial(n-1, (n-k)/2)*(1+(-1)^(n+k))*(A042965(k)+0^k). (End)
From Paul Barry, Jan 17 2005: (Start)
a(n+1) = ceiling(2^n/3) + floor(2^n/3) = (ceiling(2^n/3))^2 - (floor(2^n/3))^2.
a(n+1) = A005578(n) + A000975(n-1) = A005578(n)^2 - A000975(n-1)^2. (End)
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} (-1)^(n-j)*binomial(j, k). - Paul Barry, Jan 26 2005
Let M = [1, 1, 0; 1, 0, 1; 0, 1, 1], then a(n) = (M^n)[2, 1], also matrix characteristic polynomial x^3 - 2*x^2 - x + 2 defines the three-step recursion a(0)=0, a(1)=1, a(2)=1, a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n > 2. - Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 28 2005
a(n) = ceiling(2^(n+1)/3) - ceiling(2^n/3) = A005578(n+1) - A005578(n). - Paul Barry, Oct 08 2005
a(n) = floor(2^(n+1)/3) - floor(2^n/3) = A000975(n) - A000975(n-1). - Paul Barry, Oct 08 2005
From Paul Barry, Feb 20 2003: (Start)
a(n) = Sum_{k=0..floor(n/3)} binomial(n, f(n-1)+3*k);
a(n) = Sum_{k=0..floor(n/3)} binomial(n, f(n-2)+3*k), where f(n)=A080425(n). (End)
From Miklos Kristof, Mar 07 2007: (Start)
a(2*n) = (1/3)*Product_{d|n} cyclotomic(d,4).
a(2*n+1) = (1/3)*Product_{d|2*n+1} cyclotomic(2*d,2). (End)
From Hieronymus Fischer, Apr 23 2007: (Start)
The a(n) are closely related to nested square roots; this is 2*sin(2^(-n)*Pi/2*a(n)) = sqrt(2-sqrt(2-sqrt(2-sqrt(...sqrt(2)))...) {with the '2' n times, n >= 0}.
Also 2*cos(2^(-n)*Pi*a(n)) = sqrt(2-sqrt(2-sqrt(2-sqrt(...sqrt(2)))...) {with the '2' n-1 times, n >= 1} as well as
2*sin(2^(-n)*3/2*Pi*a(n)) = sqrt(2+sqrt(2+sqrt(2+sqrt(...sqrt(2)))...) {with the '2' n times, n >= 0} and
2*cos(2^(-n)*3*Pi*a(n)) = -sqrt(2+sqrt(2+sqrt(2+sqrt(...sqrt(2)))...) {with the '2' n-1 times, n >= 1}.
a(n) = 2^(n+1)/Pi*arcsin(b(n+1)/2) where b(n) is defined recursively by b(0)=2, b(n)=sqrt(2-b(n-1)).
There is a similar formula regarding the arccos function, this is a(n) = 2^n/Pi*arccos(b(n)/2).
With respect to the sequence c(n) defined recursively by c(0)=-2, c(n)=sqrt(2+c(n-1)), the following formulas hold true: a(n) = 2^n/3*(1-(-1)^n*(1-2/Pi*arcsin(c(n+1)/2))); a(n) = 2^n/3*(1-(-1)^n*(1-1/Pi*arccos(-c(n)/2))).
(End)
Sum_{k=0..n} A039599(n,k)*a(k) = A049027(n), for n >= 1. - Philippe Deléham, Jun 10 2007
Sum_{k=0..n} A039599(n,k)*a(k+1) = A067336(n). - Philippe Deléham, Jun 10 2007
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0,] = [A005578(n), a(n), A000975(n-1)]. - Gary W. Adamson, Dec 24 2007
a(n) + a(n+5) = 11*2^n. - Paul Curtz, Jan 17 2008
a(n) = Sum_{k=1..n} K(2, k)*a(n - k), where K(n,k) = k if 0 <= k <= n and K(n,k)=0 otherwise. (When using such a K-coefficient, several different arguments to K or several different definitions of K may lead to the same integer sequence. For example, the Fibonacci sequence can be generated in several ways using the K-coefficient.) - Thomas Wieder, Jan 13 2008
a(n) + a(n+2*k+1) = a(2*k+1)*2^n. - Paul Curtz, Feb 12 2008
a(n) = lower left term in the 2 X 2 matrix [0,2; 1,1]^n. - Gary W. Adamson, Mar 02 2008
a(n+1) = Sum_{k=0..n} A109466(n,k)*(-2)^(n-k). -Philippe Deléham, Oct 26 2008
a(n) = sqrt(8*a(n-1)*a(n-2) + 1). E.g., sqrt(3*5*8+1) = 11, sqrt(5*11*8+1) = 21. - Giuseppe Ottonello, Jun 14 2009
Let p[i] = Fibonacci(i-1) and let A be the Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = det(A). - Milan Janjic, May 08 2010
a(p-1) = p*A007663(n)/3 if n > 1, and a(p-1) = p*A096060(n) if n > 2, with p=prime(n). - Jonathan Sondow, Jul 19 2010
Algebraically equivalent to replacing the 5's with 9's in the explicit (Binet) formula for the n-th term in the Fibonacci sequence: The formula for the n-th term in the Fibonacci sequence is F(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)). Replacing the 5's with 9's gives ((1+sqrt(9))^n - (1-sqrt(9))^n)/(2^n*sqrt(9)) = (2^n+(-1)^(n+1))/3 = (2^n-(-1)^(n))/3 = a(n). - Jeffrey R. Goodwin, May 27 2011
For n > 1, a(n) = A000975(n-1) + (1 + (-1)^(n-1))/2. - Vladimir Shevelev, Feb 27 2012
From Sergei N. Gladkovskii, Jun 12 2012: (Start)
G.f.: x/(1-x-2*x^2) = G(0)/3; G(k) = 1 - ((-1)^k)/(2^k - 2*x*4^k/(2*x*2^k - ((-1)^k)/G(k+1))); (continued fraction 3 kind, 3-step).
E.g.f.: G(0)/3; G(k) = 1 - ((-1)^k)/(2^k - 2*x*4^k/(2*x*2^k - ((-1)^k)*(k+1)/G(k+1))); (continued fraction 3rd kind, 3-step). (End)
a(n) = 2^k * a(n-k) + (-1)^(n+k)*a(k). - Paul Curtz, Jean-François Alcover, Dec 11 2012
a(n) = sqrt((A014551(n))^2 + (-1)^(n-1)*2^(n+2))/3. - Vladimir Shevelev, Mar 13 2013
G.f.: Q(0)/3, where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(2*k+1 + 2*x)/( x*(2*k+2 + 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 29 2013
G.f.: Q(0) -1, where Q(k) = 1 + 2*x^2 + (k+2)*x - x*(k+1 + 2*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013
a(n+2) = Sum_{k=0..n} A108561(n,k)*(-2)^k. - Philippe Deléham, Nov 17 2013
a(n) = (Sum_{k=1..n, k odd} C(n,k)*3^(k-1))/2^(n-1). - Vladimir Shevelev, Feb 05 2014
a(-n) = -(-1)^n * a(n) / 2^n for all n in Z. - Michael Somos, Mar 18 2014
a(n) = (-1)^(n-1)*Sum_{k=0..n-1} A135278(n-1,k)*(-3)^k = (2^n - (-1)^n)/3 = (-1)^(n-1)*Sum_{k=0..n-1} (-2)^k. Equals (-1)^(n-1)*Phi(n,-2), where Phi is the cyclotomic polynomial when n is an odd prime. (For n > 0.) - Tom Copeland, Apr 14 2014
From Peter Bala, Apr 06 2015: (Start)
a(2*n)/a(n) = A014551(n) for n >= 1; a(3*n)/a(n) = 3*A245489(n) for n >= 1.
exp( Sum_{n >= 1} a(2*n)/a(n)*x^n/n ) = Sum_{n >= 0} a(n+1)*x^n.
exp( Sum_{n >= 1} a(3*n)/a(n)*x^n/n ) = Sum_{n >= 0} A084175(n+1)*x^n.
exp( Sum_{n >= 1} a(4*n)/a(n)*x^n/n ) = Sum_{n >= 0} A015266(n+3)*(-x)^n.
exp( Sum_{n >= 1} a(5*n)/a(n)*x^n/n ) = Sum_{n >= 0} A015287(n+4)*x^n.
exp( Sum_{n >= 1} a(6*n)/a(n)*x^n/n ) = Sum_{n >= 0} A015305(n+5)*(-x)^n.
exp( Sum_{n >= 1} a(7*n)/a(n)*x^n/n ) = Sum_{n >= 0} A015323(n+6)*x^n.
exp( Sum_{n >= 1} a(8*n)/a(n)*x^n/n ) = Sum_{n >= 0} A015338(n+7)*(-x)^n.
exp( Sum_{n >= 1} a(9*n)/a(n)*x^n/n ) = Sum_{n >= 0} A015356(n+8)*x^n.
exp( Sum_{n >= 1} a(10*n)/a(n)*x^n/n ) = Sum_{n >= 0} A015371(n+9)*(-x)^n. (End)
a(n) = (1-(-1)^n)/2 + floor((2^n)/3). - Reiner Moewald, Jun 05 2015
a(n+k)^2 - A014551(k)*a(n)*a(n+k) + (-2)^k*a(n)^2 = (-2)^n*a(k)^2, for n >= 0 and k >= 0. - Alexander Samokrutov, Jul 21 2015
Dirichlet g.f.: (PolyLog(s,2) + (1 - 2^(1-s))*zeta(s))/3. - Ilya Gutkovskiy, Jun 27 2016
From Yuchun Ji, Apr 08 2018: (Start)
a(m)*a(n) + a(m-1)*a(n-1) - 2*a(m-2)*a(n-2) = 2^(m+n-3).
a(m+n-1) = a(m)*a(n) + 2*a(m-1)*a(n-1); a(m+n) = a(m+1)*a(n+1) - 4*a(m-1)*a(n-1).
a(2*n-1) = a(n)^2 + 2*a(n-1)^2; a(2*n) = a(n+1)^2 - 4*a(n-1)^2. (End)
a(n+4) = a(n) + 5*2^n, a(0) = 0, a(1..4) = [1,1,3,5]. That is to say, for n > 0, the ones digits of Jacobsthal numbers follow the pattern 1,1,3,5,1,1,3,5,1,1,3,5,.... - Yuchun Ji, Apr 25 2019
a(n) mod 10 = A091084(n). - Alois P. Heinz, Apr 25 2019
The sequence starting with "1" is the second INVERT transform of (1, -1, 3, -5, 11, -21, 43, ...). - Gary W. Adamson, Jul 08 2019
From Kai Wang, Jan 14 2020: (Start)
a(n)^2 - a(n+1)*a(n-1) = (-2)^(n-1).
a(n)^2 - a(n+r)*a(n-r) = (-2)^(n-r)*a(r)^2.
a(m)*a(n+1) - a(m+1)*a(n) = (-2)^n*a(m-n).
a(m-n) = (-1)^n*(a(m)*A014551(n) - A014551(m)*a(n))/(2^(n+1)).
a(m+n) = (a(m)*A014551(n) + A014551(m)*a(n))/2.
A014551(n)^2 - A014551(n+r)*A014551(n-r) = 9*(-1)^(n-r-1)*2^(n-r)*a(r)^2 .
A014551(m)*A014551(n+1) - A014551(m+1)*A014551(n) = 9*(-1)^(n-1)*2^(n)*a(m-n).
A014551(m-n) = (-1)^(n)*(A014551(m)*A014551(n) - 9*a(m)*a(n))/2^(n+1).
A014551(m+n) = (A014551(m)*A014551(n) + 9*a(m)*a(n))/2.
a(n) = Sum_{i=0..n-1; j=0..n-1; i+2*j=n-1} 2^j*((i+j)!/(i!*j!)). (End)
For n > 0, 1/(2*a(n+1)) = Sum_{m>=n} a(m)/(a(m+1)*a(m+2)). - Kai Wang, Mar 03 2020
For 4 > h >= 0, k >= 0, a(4*k+h) mod 5 = a(h) mod 5. - Kai Wang, May 07 2020
From Kengbo Lu, Jul 27 2020: (Start)
a(n) = 1 + Sum_{k=0..n-1} a(k) if n odd; a(n) = Sum_{k=0..n-1} a(k) if n even.
a(n) = F(n) + Sum_{k=0..n-2} a(k)*F(n-k-1), where F denotes the Fibonacci numbers.
a(n) = b(n) + Sum_{k=0..n-1} a(k)*b(n-k), where b(n) is defined through b(0) = 0, b(1) = 1, b(n) = 2*b(n-2).
a(n) = 1 + 2*Sum_{k=0..n-2} a(k).
a(m+n) = a(m)*a(n+1) + 2*a(m-1)*a(n).
a(2*n) = Sum_{i>=0, j>=0} binomial(n-j-1,i)*binomial(n-i-1,j)*2^(i+j). (End)
G.f.: x/(1 - x - 2*x^2) = Sum_{n >= 0} x^(n+1) * Product_{k = 1..n} (k + 2*x)/(1 + k*x) (a telescoping series). - Peter Bala, May 08 2024
a(n) = Sum_{r>=0} F(n-2r, r), where F(n, 0) is the n-th Fibonacci number and F(n,r) = Sum_{j=1..n} F(n+1-j, r-1) F(j, r-1). - Gregory L. Simay, Aug 31 2024
From Peter Bala, Jun 27 2025: (Start)
The following are all examples of telescoping infinite products:
Product_{n >= 1} (1 + 2^n/a(2*n+2)) = 2, since 1 + 2^n/a(2*n+2) = b(n+1)/b(n), where b(n) = 2 - 3/(2^n + 1).
Product_{n >= 1} (1 - 2^n/a(2*n+2)) = 2/5, since 1 - 2^n/a(2*n+2) = c(n+1)/c(n), where c(n) = 2 + 3/(2^n - 1).
Product_{n >= 1} (1 + (-2)^n/a(2*n+2)) = 2/3, since 1 + (-2)^n/a(2*n+2) = d(n+1)/d(n), where d(n) = 2 - 1/(1 + (-2)^n).
Product_{n >= 1} (1 - (-2)^n/a(2*n+2)) = 6/5, since 1 - (-2)^n/a(2*n+2) = e(n+1)/e(n), where e(n) = 2 - 1/(1 - (-2)^n). (End)

Extensions

Thanks to Don Knuth, who pointed out several missing references, including Brocard (1880), which although it was mentioned in the 1973 Handbook of Integer Sequences, was omitted from the 1995 "Encyclopedia". - N. J. A. Sloane, Dec 26 2020

A064535 a(n) = (2^prime(n)-2)/prime(n); a(0) = 0 by convention.

Original entry on oeis.org

0, 1, 2, 6, 18, 186, 630, 7710, 27594, 364722, 18512790, 69273666, 3714566310, 53634713550, 204560302842, 2994414645858, 169947155749830, 9770521225481754, 37800705069076950, 2202596307308603178, 33256101992039755026, 129379903640264252430
Offset: 0

Views

Author

Shane Findley, Oct 09 2001

Keywords

Comments

As a corollary to Fermat's little theorem, (2^p - 2)/p is always an integer for p prime. - Alonso del Arte, May 04 2013

Examples

			a(3) = 6, because prime(3) = 5, and (2^5 - 2)/5 = 30/5 = 6.
a(4) = 18, because prime(4) = 7, and (2^7  - 2)/7 = 126/7 = 18.
		

Crossrefs

Cf. A007663, A056743, A225101 (superset).

Programs

  • Magma
    [0] cat [(2^NthPrime(n)-2)/NthPrime(n): n in [1..25]]; // Vincenzo Librandi, Sep 14 2018
  • Maple
    A064535 := proc(n) ( 2^ithprime(n) - 2 )/ithprime(n); end;
  • Mathematica
    Table[(2^Prime[n] - 2)/Prime[n], {n, 50}] (* Alonso del Arte, Apr 28 2013 *)
  • PARI
    { for (n=0, 100, if (n, a=(2^prime(n) - 2)/prime(n), a=0); write("b064535.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 17 2009
    

Formula

a(n) = A001037(prime(n)) for n >= 1. - Hilko Koning, Sep 10 2018
a(n) = 2*A007663(n) for n > 1. - Jeppe Stig Nielsen, May 16 2021

A246568 Near-Wieferich primes (primes p satisfying 2^((p-1)/2) == +-1 + A*p (mod p^2)) with |A| < 10.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 31, 41, 43, 59, 67, 71, 89, 127, 251, 379, 569, 571, 1093, 1427, 1451, 1733, 2633, 2659, 2903, 3511, 13463, 15329, 15823, 26107, 60631, 546097, 2549177, 110057537, 165322639, 209227901, 671499313, 867457663, 3520624567
Offset: 1

Views

Author

Felix Fröhlich, Aug 30 2014

Keywords

Comments

The data section gives all terms up to 10^10. There are eight more terms up to 3*10^15 (see b-file).
A is essentially (A007663(n) modulo A000040(n))/2 (see Crandall et al. (1997), p. 437). The choice of the bound for A is rather arbitrary and selecting a larger A will result in more terms in a specific interval. For any p there exist two values of A whose sum is p, except when p is in A001220, in which case A = 0.

Crossrefs

Programs

A096060 (2^(p-1)-1)/(3*p) where p = prime(n).

Original entry on oeis.org

1, 3, 31, 105, 1285, 4599, 60787, 3085465, 11545611, 619094385, 8939118925, 34093383807, 499069107643, 28324525958305, 1628420204246959, 6300117511512825, 367099384551433863, 5542683665339959171
Offset: 3

Views

Author

Amarnath Murthy, Jun 18 2004

Keywords

Crossrefs

Programs

  • Magma
    [(2^(NthPrime(n)-1)-1) div (3*NthPrime(n)): n in [3..25]]; // Vincenzo Librandi, Oct 15 2014
  • Maple
    seq((2^(ithprime(n)-1)-1)/(3*ithprime(n)), n=3..50); # Robert Israel, Oct 14 2014
  • Mathematica
    Table[(2^(Prime[n]-1)-1)/(3*Prime[n]),{n,3,22}] (* Alexander Adamchuk, Jun 08 2006 *)
    Table[(2^(n-1)-1)/(3n),{n,Prime[Range[3,20]]}] (* Harvey P. Dale, Dec 27 2014 *)
  • PARI
    b(n) = (4^n - 1)/3;
    a(n) = p = prime(n); b((p-1)/2)/p; \\ Michel Marcus, Sep 30 2014
    

Formula

a(n) = A001045(prime(n)-1)/prime(n).
a(n) = A007663(n)/3 for n>2. - Alexander Adamchuk, Jun 08 2006
a(n) = A002450((p-1)/2)/p, for p=prime(n) and n>=3. - Roderick MacPhee, Sep 29 2014

Extensions

More terms from Alexander Adamchuk, Jun 08 2006
Formula using A001045 corrected by Jonathan Sondow, Jul 19 2010

A238693 Quotients connected with the Banach matchboxes problem: Sum_{i=1..prime(n)-5} 2^(i-1)*binomial(i+1,2)/prime(n) (case 2).

Original entry on oeis.org

0, 1, 93, 571, 16143, 79333, 1755225, 160251339, 705725473, 57691858003, 1057609507815, 4500326662525, 80662044522801, 5995948088798691, 437230824840308493, 1820340203482736875, 130228506669621162901, 2230237339841166071433, 9214275012380069727751
Offset: 3

Views

Author

Vladimir Shevelev, Mar 03 2014

Keywords

Comments

A general congruence connected with the Banach matchboxes problem is the following: for k=1,2,...,(p-1)/2, Sum_{i=1..p-2k-1} 2^(i-1)*binomial(k-1+i,k) == 0 (mod p) (p is odd prime). If k=1 (case 1), then one can prove that the corresponding quotients are 2^(prime(n)-3) - A007663(n), n >= 2.

Crossrefs

Programs

  • Mathematica
    Array[Sum[2^(i - 1)*Binomial[i + 1, 2]/#, {i, # - 5}] &@ Prime@ # &, 19, 3] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a(n) = sum(i=1, prime(n)-5, 2^(i-1)*binomial(i+1,2))/prime(n); \\ Michel Marcus, Dec 06 2018

Extensions

More terms from Peter J. C. Moses, Mar 03 2014

A096082 Smallest odd prime p such that p^2 | n^(p-1) - 1.

Original entry on oeis.org

3, 1093, 11, 1093, 20771, 66161, 5, 3, 11, 3, 71, 2693, 863, 29, 29131, 1093, 3, 5, 3, 281
Offset: 1

Views

Author

Lekraj Beedassy, Jul 22 2004

Keywords

Comments

Similar to the sequence A039951 where p=2 is allowed.
a(n^k) <= a(n) for any n,k>1.
a(21) > 1.63*10^14 (see Fischer's link).
For all nonnegative integers n and k, a(n^(n^k)) = a(n). (see puzzle 762 in the links). Also a(n) = 3 if and only if mod(n, 36) is in the set {1, 8, 10, 19, 26, 28, 35}. - Farideh Firoozbakht and Jahangeer Kholdi, Nov 01 2014

Crossrefs

Cf. A007663, A001220, A039951, A124121, 124122.

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[k < 5181800 && PowerMod[n, Prime[k] - 1, Prime[k]^2] != 1, k++ ]; If[k == 5181800, 0, Prime[k]]]; Table[ f[n], {n, 70}] (* Robert G. Wilson v, Jul 23 2004 *)
  • PARI
    for(n=2, 20, forprime(p=3, 1e9, if(Mod(n, p^2)^(p-1)==1, print1(p, ", "); next({2}))); print1("--, ")) \\ Felix Fröhlich, Jul 24 2014

Formula

a(n) = A039951(n) for all n not of the form 4k+1, while a(4k+1) > A039951(4k+1) = 2. - Alexander Adamchuk, Dec 03 2006

Extensions

Definition corrected by Alexander Adamchuk, Nov 27 2006
Edited by Max Alekseyev, Oct 07 2009
Edited and updated by Max Alekseyev, Jan 29 2012

A238736 Balancing Wieferich primes: primes p that divide their Pell quotients, where the Pell quotient of p is A000129(p - (2/p))/p and (2/p) is a Jacobi symbol.

Original entry on oeis.org

13, 31, 1546463
Offset: 1

Views

Author

John Blythe Dobson, Mar 04 2014

Keywords

Comments

Williams 1982 (p. 86), notes that p = 13, 31 and 1546463 are the only primes less than 10^8 for which the Pell quotient vanishes mod p. Elsenhans and Jahnel, "The Fibonacci sequence modulo p^2," p. 5, report in effect that there are no more such primes p < 10^9.
Williams 1991 (p. 440), and Sun 1995 pt. 3, Theorem 3.3, together prove a set of formulas connecting the Pell quotient with the Fermat quotient (base 2) (A007663) and harmonic numbers like H(floor(p/8)) (see example in the Formula section below). As is well known, the vanishing of the Fermat quotient (base 2) is a necessary condition for the failure of the first case of Fermat's Last Theorem (see discussion under A001220); and in light of a corresponding result of Dilcher and Skula concerning this type of harmonic number, the vanishing of the Pell quotient mod p is also a necessary condition for the failure of the first case of Fermat's Last Theorem.
There are no more terms up to 10^10.
Using the PARI script by Charles R Greathouse IV, I have extended the search from 10^10 to 10^12 without finding a further solution. - John Blythe Dobson, Mar 30 2015
Also primes p such that p^2 divides A001109((p - (2/p))/2). - Jianing Song, Oct 08 2018
From Felix Fröhlich, May 18 2019: (Start)
The term "balancing Wieferich prime" comes from Rout, 2016.
Primes p that satisfy the congruence B_{p-(8/p)} == 0 (mod p^2), where B_i denotes the i-th balancing number A001109(i) and (a/b) denotes the Jacobi symbol (cf. Rout, 2016, (1.6)).
Primes p such that the period of the balancing sequence (A001109) modulo p is equal to the period of the balancing sequence modulo p^2 (cf. Panda, Rout, 2014, p. 275).
Under the abc conjecture for the number field Q(sqrt(2)) there exist at least (log(x)/log(log(x)))*(log(log(log(x))))^m balancing non-Wieferich primes <= x such that p == 1 (mod k) for any integers k > 2, m > 0 (cf. Dutta, Patel, Ray, 2019). This is an improvement of an earlier result stating there are at least log(x)/log(log(x)) balancing non-Wieferich primes p == 1 (mod k) less than x (cf. Theorem 3.2 in Rout 2016). (End)

Examples

			PellQuotient(13) = 6214 = 13*478; PellQuotient(31) = 3470274850 = 31*111944350.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], Mod[Fibonacci[# - JacobiSymbol[2, #], 2]/#, #] == 0 &]
  • PARI
    is(n)=isprime(n) && (Mod([2,1;1,0],n^2)^(n-kronecker(2,n)))[2,1]==0 \\ Charles R Greathouse IV, Mar 04 2014

Formula

The condition for p to be a member of this sequence is A000129(p-e)/p == F(p-e, 2)/p == 0 (mod p), where F(p-e, 2) is the p-e'th Fibonacci polynomial evaluated at the argument 2, and e = (2/p) is a Jacobi Symbol.
Let PellQuotient(p) = A000129(p-e)/p, q_2 = (2^(p-1) - 1)/p = A007663(p) be the corresponding Fermat quotient of base 2, H(floor(p/8)) be a harmonic number, and e = (2/p) be a Jacobi Symbol. Then a result of Williams (1991), as refined by Sun (1995), shows that 2*PellQuotient(p) == -4*q_2 - H(floor(p/8)) (mod p).

Extensions

Name amended by Felix Fröhlich, May 26 2019
Showing 1-10 of 33 results. Next