A014127
Mirimanoff primes: primes p such that p^2 divides 3^(p-1) - 1.
Original entry on oeis.org
- Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979, pp. 23, 152-153.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.
- Alf van der Poorten, Notes on Fermat's Last Theorem, Wiley, 1996, p. 21.
- Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
- Chris K. Caldwell, Fermat Quotient, The Prime Glossary.
- John Blythe Dobson, On the special harmonic numbers H_floor(p/9) and H_floor(p/18) modulo p, arXiv:2302.02027 [math.NT], 2023.
- François G. Dorais and Dominic Klyve, A Wieferich prime search up to p < 6.7*10^15, J. Integer Seq., Vol. 14 (2011), Article 11.9.2, 1-14.
- Wilfrid Keller and Jörg Richstein, Solutions of the congruence a^(p-1) == 1 (mod p^r), Math. Comp., Vol. 74, No. 250 (2005), pp. 927-936.
- K. E. Kloss, Some Number-Theoretic Calculations, Journal of Research of the National Bureau of Standards - B. Mathematics and Mathematical Physics, Vol. 69B, No. 4 (Oct.-Dec. 1965), pp. 335-336.
- Mathias Lerch, Zur Theorie des Fermatschen Quotienten (a^(p-1) - 1)/p == q(a), Mathematische Annalen, Vol. 60 (1905), pp. 471-490.
- D. Mirimanoff, Sur le dernier théorème de Fermat, C. R. Acad. Sci. Paris, Vol. 150 (1910), pp. 204-206. Revised as Sur le dernier théorème de Fermat, Journal für die reine und angewandte Mathematik, Vol. 139 (1911), pp. 309-324.
- Planet Math, Wieferich Primes.
- Reese Scott and Robert Styer, On the generalized Pillai equation +-a^x +-b^y = c, Journal of Number Theory, Vol. 118, No. 2 (2006), pp. 236-265.
Sequences "primes p such that p^2 divides X^(p-1)-1":
A001220 (X=2),
A123692 (X=5),
A212583 (X=6),
A123693 (X=7),
A045616 (X=10),
A111027 (X=12),
A128667 (X=13),
A234810 (X=14),
A242741 (X=15),
A128668 (X=17),
A244260 (X=18),
A090968 (X=19),
A242982 (X=20),
A298951 (X=22),
A128669 (X=23),
A306255 (X=26),
A306256 (X=30).
-
Select[Prime[Range[1000000]], PowerMod[3, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
-
N=10^9; default(primelimit,N);
forprime(n=2,N,if(Mod(3,n^2)^(n-1)==1,print1(n,", ")));
\\ Joerg Arndt, May 01 2013
-
from sympy import prime
from gmpy2 import powmod
A014127_list = [p for p in (prime(n) for n in range(1,10**7)) if powmod(3,p-1,p*p) == 1] # Chai Wah Wu, Dec 03 2014
A039951
a(n) is the smallest prime p such that p^2 divides n^(p-1) - 1.
Original entry on oeis.org
2, 1093, 11, 1093, 2, 66161, 5, 3, 2, 3, 71, 2693, 2, 29, 29131, 1093, 2, 5, 3, 281, 2, 13, 13, 5, 2, 3, 11, 3, 2, 7, 7, 5, 2, 46145917691, 3, 66161, 2, 17, 8039, 11, 2, 23, 5, 3, 2, 3
Offset: 1
- C. K. Caldwell, The Prime Glossary, Fermat quotient.
- Richard Fischer, Fermat quotients B^(P-1) == 1 (mod P^2)
- Richard Fischer, Update Table of n, July 15 2021.
- W. Keller and J. Richstein, Fermat quotients q_p(a) that are divisible by p.
- Carlos Rivera, Puzzle 762. Conjecture from Ribenboim's book, The Prime Puzzles and Problems Connection.
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (with missing terms)
-
Table[p = 2; While[! Divisible[n^(p - 1) - 1, p^2], p = NextPrime@ p]; p, {n, 33}] (* Michael De Vlieger, Nov 24 2016 *)
f[n_] := Block[{p = 2}, While[ PowerMod[n, p - 1, p^2] != 1, p = NextPrime@ p]; p]; Array[f, 33] (* Robert G. Wilson v, Jul 18 2018 *)
-
a(n)={forprime(p=2, oo, if(Mod(n, p^2)^(p-1)==1, return(p))); oo} \\ Felix Fröhlich, Jul 24 2014
a(34)-a(46) from Helmut Richter (richter(AT)lrz.de), May 17 2004
A039678
Smallest number m > 1 such that m^(p-1)-1 is divisible by p^2, where p = n-th prime.
Original entry on oeis.org
5, 8, 7, 18, 3, 19, 38, 28, 28, 14, 115, 18, 51, 19, 53, 338, 53, 264, 143, 11, 306, 31, 99, 184, 53, 181, 43, 164, 96, 68, 38, 58, 19, 328, 313, 78, 226, 65, 253, 259, 532, 78, 176, 276, 143, 174, 165, 69, 330, 44, 33, 332, 94, 263, 48, 79, 171, 747, 731, 20, 147, 91, 40
Offset: 1
For n=3, p=5 is the third prime and 5^2 = 25 divides 7^4 - 1 = 2400.
- P. Ribenboim, The New Book of Prime Number Records, Springer, 1996, 345-349.
-
dpa[n_]:=Module[{p=Prime[n],a=2},While[PowerMod[a,p-1,p^2]!=1,a++];a]; Array[dpa,70] (* Harvey P. Dale, Sep 05 2012 *)
-
a(n) = my(p=prime(n)); for(a=2, oo, if(Mod(a, p^2)^(p-1)==1, return(a))) \\ Felix Fröhlich, Nov 24 2018
-
from sympy import prime
from sympy.ntheory.residue_ntheory import nthroot_mod
def A039678(n): return 2**2+1 if n == 1 else int(nthroot_mod(1,(p:= prime(n))-1,p**2,True)[1]) # Chai Wah Wu, May 18 2022
A123692
Primes p such that p^2 divides 5^(p-1) - 1.
Original entry on oeis.org
2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
Offset: 1
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.
- Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
- Chris K. Caldwell, The Prime Glossary, Fermat quotient.
- Keith Conrad, The ring of integers in a radical extension.
- François G. Dorais and Dominic Klyve, A Wieferich prime search up to p < 6.7*10^15, J. Integer Seq. 14 (2011), Art. 11.9.2, 1-14.
- W. Keller and J. Richstein, Solutions of the congruence a^p-1 == 1 (mod p^r), Math. Comp. 74 (2005), 927-936.
- A. Paszkiewicz, A new prime p for which the least primitive root (mod p) and the least primitive root (mod p^2) are not equal, Math. Comp. 78 (2009), 1193-1195.
-
Select[Prime[Range[2500]], Divisible[5^(# - 1) - 1, #^2] &] (* Alonso del Arte, Aug 01 2014 *)
Select[Prime[Range[55*10^6]],PowerMod[5,#-1,#^2]==1&] (* The program generates the first 4 terms of the sequence. *) (* Harvey P. Dale, Jan 29 2023 *)
-
N=10^9; default(primelimit, N);
forprime(n=2, N, if(Mod(5, n^2)^(n-1)==1, print1(n, ", ")));
\\ Joerg Arndt, May 01 2013
A090968
Primes p such that p^2 divides 19^(p-1) - 1.
Original entry on oeis.org
3, 7, 13, 43, 137, 63061489
Offset: 1
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 43, p. 17, Ellipses, Paris 2008.
- Paulo Ribenboim, The Little Book Of Big Primes, Springer-Verlag, NY 1991, page 170.
- Roozbeh Hazrat, Mathematica: A Problem-Centered Approach, Springer 2010, pp. 39, 171. [Harvey P. Dale, Oct 17 2011]
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ p = NextPrim[p]; If[PowerMod[19, p - 1, p^2] == 1, Print[p]], {n, 1, 2*10^8}]
Select[Prime[Range[4*10^6]],PowerMod[19,#-1,#^2]==1&] (* Harvey P. Dale, Nov 08 2017 *)
A143548
Irregular triangle of numbers k < p^2 such that p^2 divides k^(p-1)-1, with p=prime(n).
Original entry on oeis.org
1, 1, 8, 1, 7, 18, 24, 1, 18, 19, 30, 31, 48, 1, 3, 9, 27, 40, 81, 94, 112, 118, 120, 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168, 1, 38, 40, 65, 75, 110, 131, 134, 155, 158, 179, 214, 224, 249, 251, 288, 1, 28, 54, 62, 68, 69, 99, 116, 127, 234, 245, 262, 292, 293, 299, 307, 333, 360
Offset: 1
(2) 1,
(3) 1, 8,
(5) 1, 7, 18, 24,
(7) 1, 18, 19, 30, 31, 48,
(11) 1, 3, 9, 27, 40, 81, 94, 112, 118, 120,
(13) 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168,
(17) 1, 38, 40, 65, 75, 110, 131, 134, 155, 158, 179, 214, 224, 249, 251, 288,
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2005
Cf.
A039678,
A056020,
A056021,
A056022,
A056024,
A056025,
A056027,
A056028,
A056031,
A056034,
A056035,
A096082,
A138416.
-
f:= proc(n) local p,j,x;
p:= ithprime(n);
x:= numtheory:-primroot(p);
op(sort([seq(x^(i*p) mod p^2, i=0..p-2)]))
end proc:
map(f, [$1..20]); # Robert Israel, Sep 27 2016
-
Flatten[Table[p=Prime[n]; Select[Range[p^2], PowerMod[ #,p-1,p^2]==1&], {n,50}]] (* T. D. Noe, Aug 24 2008 *)
Flatten[Table[p=Prime[n]; r=PrimitiveRoot[p]; b=PowerMod[r,p,p^2]; Sort[NestList[Mod[b*#,p^2]&,1,p-2]], {n,50}]] (* Faster version from T. D. Noe, Aug 26 2008 *)
A242982
Primes p such that p^2 divides 20^(p-1) - 1.
Original entry on oeis.org
281, 46457, 9377747, 122959073
Offset: 1
-
Select[Prime[Range[1000000]], PowerMod[20, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
-
forprime(n=2, 10^9, if(Mod(20, n^2)^(n-1)==1, print1(n, ", ")));
A244260
Primes p such that p^2 divides 18^(p-1) - 1.
Original entry on oeis.org
5, 7, 37, 331, 33923, 1284043
Offset: 1
Cf.
A001220,
A014127,
A123692,
A212583,
A123693,
A045616,
A111027,
A128667,
A234810,
A242741,
A128668,
A090968,
A242982,
A039951,
A096082.
-
Select[Prime[Range[1000000]], PowerMod[18, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
-
forprime(n=2, 10^9, if(Mod(18, n^2)^(n-1)==1, print1(n, ", ")));
A247072
Smallest Wieferich prime (> sqrt(n)) in base n.
Original entry on oeis.org
2, 1093, 11, 1093, 20771, 66161, 5, 3, 11, 487, 71, 2693, 863, 29, 29131, 1093, 46021, 5, 7, 281
Offset: 1
a(12) = 2693 because the Wieferich primes to base 12 are 2693, 123653, ..., and 2693 is greater than sqrt(12), so a(12) = 2693.
a(17) = 46021 because the Wieferich primes to base 17 are 2, 3, 46021, 48947, 478225523351, ..., but neither 2 nor 3 is greater than sqrt(17), so a(17) = 46021.
Cf.
A001220,
A014127,
A123692,
A212583,
A123693,
A045616,
A111027,
A128667,
A234810,
A242741,
A128668,
A244260,
A090968,
A242982,
A128669.
-
a247072[n_] := Block[{p = Int[Sqrt[n]]+1}, While[!PrimeQ[p] || [p < 10^8 && PowerMod[n, p - 1, p^2] != 1], p++]; If[p == 10^8, 0, p]]; Table[ a247072[n], {n, 100}] (* Eric Chen, Nov 27 2014 *)
-
a(n)=forprime(p=sqrtint(n)+1,,if(Mod(n^(p-1),p^2)==1,return(p)))
n=1; while(n<101, print1(a(n), ", "); n++) \\ Charles R Greathouse IV, Nov 16 2014
Showing 1-9 of 9 results.
Comments