A007694 Numbers k such that phi(k) divides k.
1, 2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 48, 54, 64, 72, 96, 108, 128, 144, 162, 192, 216, 256, 288, 324, 384, 432, 486, 512, 576, 648, 768, 864, 972, 1024, 1152, 1296, 1458, 1536, 1728, 1944, 2048, 2304, 2592, 2916, 3072, 3456, 3888, 4096, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8192, 8748, 9216
Offset: 1
Examples
12 is in the sequence because 12/phi(12) = 12/4 = 3, which is an integer. 16 is in the sequence because 16/phi(16) = 16/8 = 2, which is an integer. 20 is not in the sequence because 20/phi(20) = 20/8 = 5/2 = 2.5, which is not an integer.
References
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 526 pp. 71; 256, Ellipses Paris 2004.
- Sárközy A. and Suranyi J., Number Theory Problem Book (in Hungarian), Tankonyvkiado, Budapest, 1972.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Roohollah Ebrahimian, When Does phi(n) divide n? A Number Theory Math Competition Problem., YouTube video, 2023.
- Michael W. Ecker and Scott J. Beslin, Problem E3037, Amer. Math. Monthly, Vol. 93, No. 8 (1986), pp. 656-657.
- Florian Luca and Carl Pomerance, On the range of the iterated Euler function, Article 8, Integers: Electronic Journal of Combinatorial Number Theory, Proceedings of the Integers Conference 2007, Volume 9 Supplement (2009).
- Mathematics Stack Exchange, Is there phi(n)/n = 6
- Wacław Sierpiński, Elementary Theory of Numbers, Warszawa, 1964.
Crossrefs
Programs
-
Haskell
a007694 n = a007694_list !! (n-1) a007694_list = 1 : filter even a003586_list -- Reinhard Zumkeller, Jan 06 2014
-
Maple
select(n -> n mod numtheory:-phi(n) = 0, [$1..5000]); # Robert Israel, Nov 03 2014
-
Mathematica
Select[ Range[5000], IntegerQ[ #/EulerPhi[ # ]] &] m = 5000; Join[{1}, Sort @ Flatten @ Table[2^i*3^j, {i, 1, Log2[m]}, {j, 0, Log[3, m/2^i]}]] (* Amiram Eldar, Oct 29 2020 *)
-
PARI
for(n=1,10^6, if (n%eulerphi(n)==0,print1(n,", "))); \\ Joerg Arndt, Apr 04 2013
-
PARI
list(lim)=my(v=List([1]),t); for(i=1,logint(lim\1,2), listput(v,t=2^i); for(j=1,logint(lim\t,3), listput(v,t*=3))); Set(v) \\ Charles R Greathouse IV, Nov 10 2015
-
R
library(numbers); j=N=1 while(j<200) if(isNatural((N=N+1)/eulersPhi(N))) dtot[(j=j+1)]=N # Christian N. K. Anderson, Apr 04 2013
-
Sage
is_A007694 = lambda n: euler_phi(n).divides(n) A007694_list = lambda len: filter(is_A007694, (1..len)) A007694_list(4100) # Peter Luschny, Oct 03 2014
Formula
k/phi(k) is an integer if and only if k = 1 or k = 2^w * 3^u for w > 0 and u >= 0.
k/phi(k) = 3 if and only if phi(k)|k and 3|k. - Thomas Ordowski, Nov 03 2014
a(n) is approximately exp(sqrt(2*log(2)*log(3)*n))/sqrt(3/2). - Charles R Greathouse IV, Nov 10 2015
From Amiram Eldar, Oct 29 2020: (Start)
a(n) = 2 * A003586(n) for n > 1.
Sum_{n>=1} 1/a(n) = 5/2. (End)
Comments