A319616 Number of non-isomorphic square multiset partitions of weight n.
1, 1, 2, 4, 11, 27, 80, 230, 719, 2271, 7519, 25425, 88868, 317972, 1168360, 4392724, 16903393, 66463148, 266897917, 1093550522, 4568688612, 19448642187, 84308851083, 371950915996, 1669146381915, 7615141902820, 35304535554923, 166248356878549, 794832704948402, 3856672543264073, 18984761300310500
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions: 1: {{1}} 2: {{1,1}} {{1}, {2}} 3: {{1,1,1}} {{1}, {2,2}} {{2}, {1,2}} {{1}, {2},{3}} 4: {{1,1,1,1}} {{1}, {1,2,2}} {{1}, {2,2,2}} {{2}, {1,2,2}} {{1,1}, {2,2}} {{1,2}, {1,2}} {{1,2}, {2,2}} {{1}, {1}, {2,3}} {{1}, {2}, {3,3}} {{1}, {3}, {2,3}} {{1}, {2}, {3}, {4}} Non-isomorphic representatives of the a(4) = 11 square matrices: . [4] . . [1 0] [1 0] [0 1] [2 0] [1 1] [1 1] . [1 2] [0 3] [1 2] [0 2] [1 1] [0 2] . . [1 0 0] [1 0 0] [1 0 0] . [1 0 0] [0 1 0] [0 0 1] . [0 1 1] [0 0 2] [0 1 1] . . [1 0 0 0] . [0 1 0 0] . [0 0 1 0] . [0 0 0 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
(* See A318795 for M[m, n, k]. *) T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n]; a[0] = 1; a[n_] := Sum[T[n, k], {k, 1, n}]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Nov 24 2018, after Andrew Howroyd *)
-
PARI
\\ See A318795 for M. a(n) = {if(n==0, 1, sum(i=1, n, M(i,i,n) - 2*M(i,i-1,n) + M(i-1,i-1,n)))} \\ Andrew Howroyd, Nov 15 2018
-
PARI
\\ See A340652 for G. seq(n)={Vec(1 + sum(k=1,n,polcoef(G(k,n,n,y),k,y) - polcoef(G(k-1,n,n,y),k,y)))} \\ Andrew Howroyd, Jan 15 2024
Extensions
a(11)-a(20) from Andrew Howroyd, Nov 15 2018
a(21) onwards from Andrew Howroyd, Jan 15 2024
Comments