A007732 Period of decimal representation of 1/n.
1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 6, 6, 1, 1, 16, 1, 18, 1, 6, 2, 22, 1, 1, 6, 3, 6, 28, 1, 15, 1, 2, 16, 6, 1, 3, 18, 6, 1, 5, 6, 21, 2, 1, 22, 46, 1, 42, 1, 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 1, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1, 18, 6, 6, 13, 1, 9, 5, 41, 6, 16, 21, 28, 2, 44, 1
Offset: 1
References
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 159 etc.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Project Euler, Reciprocal cycles: Problem 26
- Index entries for sequences related to decimal expansion of 1/n
Programs
-
Maple
A007732 := proc(n) a132740 := 1 ; for pe in ifactors(n)[2] do if not op(1,pe) in {2,5} then a132740 := a132740*op(1,pe)^op(2,pe) ; end if; end do: if a132740 = 1 then 1 ; else numtheory[order](10,a132740) ; end if; end proc: seq(A007732(n),n=1..50) ; # R. J. Mathar, May 05 2023
-
Mathematica
Table[r = n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5]; MultiplicativeOrder[10, r], {n, 100}] (* T. D. Noe, Oct 17 2012 *)
-
PARI
a(n)=znorder(Mod(10,n/2^valuation(n,2)/5^valuation(n,5))) \\ Charles R Greathouse IV, Jan 14 2013
-
Python
from sympy import n_order, multiplicity def A007732(n): return n_order(10,n//2**multiplicity(2,n)//5**multiplicity(5,n)) # Chai Wah Wu, Feb 07 2022
-
Sage
def a(n): n = ZZ(n) rad = 2**n.valuation(2) * 5**n.valuation(5) return Zmod(n // rad)(10).multiplicative_order() [a(n) for n in range(1, 20)] # F. Chapoton, May 03 2020
Formula
Note that if n=r*s where r is a power of 2 and s is odd then a(n)=a(s). Also if n=r*s where r is a power of 5 and s is not divisible by 5 then a(n) = a(s). So we just need a(n) for n not divisible by 2 or 5. This is the smallest number m such that n divides 10^m - 1; m is a divisor of phi(n), where phi = A000010.
phi(n) = n-1 only if n is prime and since a(n) divides phi(n), a(n) can only equal n-1 if n is prime. - Scott Hemphill (hemphill(AT)alumni.caltech.edu), Nov 23 2006
Extensions
More terms from James Sellers, Feb 05 2000
Comments