A007863 Number of hybrid binary trees with n internal nodes.
1, 2, 7, 31, 154, 820, 4575, 26398, 156233, 943174, 5785416, 35955297, 225914342, 1432705496, 9158708775, 58954911423, 381806076426, 2485972170888, 16263884777805, 106858957537838, 704810376478024, 4664987368511948, 30974829705533240, 206266525653071416
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 7*x^2 + 31*x^3 + 154*x^4 + 820*x^5 + 4575*x^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
- Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
- F. Chapoton, S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv preprint arXiv:1310.4521 [math.CO], 2013-2014.
- R. Ehrenborg and M. A. Readdy, Sheffer posets and r-signed permutations, Preprint submitted to Ann. Sci. Math. Quebec, 1994. (Annotated scanned copy)
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235.
- J. M. Pallo, On the listing and random generation of hybrid binary trees, International Journal of Computer Mathematics, 50, 1994, 135-145.
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
- Index entries for sequences related to rooted trees
Programs
-
Macsyma
taylor_solve_choose_order:true; taylor_solve( A^3*X^2+A^2*X+A*(X-1)+1,A,X,0,[ 20 ]);
-
Maple
A:= proc(n) option remember; if n=0 then 1 else convert(series((x^2 *A(n-1)^3 +x*A(n-1)^2 +1)/ (1-x), x=0,n+1), polynom) fi end: a:= n-> coeff(A(n), x, n): seq(a(n), n=0..30); # Alois P. Heinz, Aug 22 2008
-
Mathematica
InverseSeries[Series[(y-y^2-y^3)/(1+y), {y, 0, 24}], x] (* then A(x)=y(x)/x . - Len Smiley, Apr 14 2000 *) Table[ HypergeometricPFQ[{-n, 1 + n, 2 + n}, {1, 3/2}, -(1/4)], {n,0,23}] (* Olivier Gérard, Apr 23 2009 *) a[ n_] := If[ n < 0, 0, HypergeometricPFQ[{-n, 1 + n, 2 + n}, {1, 3/2}, -1/4]]; (* Michael Somos, Dec 31 2014 *)
-
PARI
{a(n) = if( n<0, 0, sum(k=0, n, binomial(n+k, n) * binomial(n+k+1, n-k)) / (n+1))};
-
PARI
{a(n) = local(A = 1 + x + x * O(x^n)); for(i=1, n, A = 1 + x * (A + A^2) + x^2 * A^3); polcoeff(A, n)};
-
PARI
{a(n) = local(A=1+x); for(i=1, n, A = exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * (A + x * O(x^n))^j) * x^m / m))); polcoeff(A, n, x)};
Formula
G.f. A(x) satisfies: x^2*A(x)^3 + x*A(x)^2 + (-1+x)*A(x) + 1 = 0.
a(n) = 3F2({-n, n+1, n+2 } ; {1, 3/2})( -(1/4) ). - Olivier Gérard, Apr 23 2009
a(n) = (1/(n+1))*Sum_{k=0..n} binomial(n+k,n)*binomial(n+k+1,n-k). - Vladimir Kruchinin, Dec 24 2010
G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*A(x)^k] * x^n/n ). - Paul D. Hanna, Feb 13 2011
The formal inverse of the g.f. A(x) is (sqrt(5*x^2 - 2*x + 1) - (1+x))/(2*x^2). - Paul D. Hanna, Aug 21 2012
The radius of convergence of g.f. A(x) is r = 0.1407810125... with A(r) = 2.1107712092... such that y=A(r) satisfies 5*y^3 - 12*y^2 + 4*y - 2 = 0. - Paul D. Hanna, Aug 21 2012
D-finite with recurrence: 45*n*(n+1)*a(n) - 2*n*(157*n-71)*a(n-1) + 12*(-3*n^2+15*n-14)*a(n-2) + 2*(-14*n^2+43*n-21)*a(n-3) - 4*(n-3)*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Jun 03 2014
Recurrence (of order 3): 5*n*(n+1)*(35*n-62)*a(n) = 6*n*(210*n^2 - 477*n + 181)*a(n-1) - 4*n*(35*n^2 - 132*n + 115)*a(n-2) + 2*(n-2)*(2*n-5)*(35*n-27)*a(n-3). - Vaclav Kotesovec, Jul 11 2014
a(n) ~ sqrt((s*(1+s+2*r*s^2))/(1+3*r*s)) / (2*sqrt(Pi) * r^n * n^(3/2)), where r = 52/(3*(181 + 105*sqrt(105))^(1/3)) - 1/6*(181 + 105*sqrt(105))^(1/3) + 1/3 = 0.1407810125885522212..., s = 1/15*(12 + (1323 - 105*sqrt(105))^(1/3) + (21*(63 + 5*sqrt(105)))^(1/3)) = 2.110771209224758867... . - Vaclav Kotesovec, Jul 11 2014
Comments