cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007869 Number of complementary pairs of graphs on n nodes. Also number of unlabeled graphs with n nodes and an even number of edges.

Original entry on oeis.org

1, 1, 2, 6, 18, 78, 522, 6178, 137352, 6002584, 509498932, 82545586656, 25251015686776, 14527077828617744, 15713242984902154384, 32000507852263779299344, 122967932076766466347469888, 893788862572805850273939095424, 12318904626562502262191503745716384
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A054960 for graphs with an odd number of edges.

Programs

  • Mathematica
    Needs["Combinatorica`"]; Table[Total[Table[NumberOfGraphs[n,m],{m,0,Binomial[n,2],2}]],{n,1,15}]  (* Geoffrey Critzer, Oct 20 2012; modified by Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(n)={local(p=vector(n));
    my(S=0, J() = sum(j=0, floor((n-1)/2), p[2*j+1]),
        I2() = (sum(i=1, n, sum(j=1, n, p[i]*p[j]*gcd(i, j))) - J())/2,
        M1() = (abs((p[1]-0)*(p[1]-1)) + sum(j=2, n, if(0!=(j%4), p[j], 0))),
    inc()=!forstep(i=n, 1, -1, p[i]n, p[i]=n); next(2))); t==n && S+=(if(M1() == 0, 2^I2()/prod(i=1, n, i^p[i]*p[i]!), 0) + 2^I2()/prod(i=1, n, i^p[i]*p[i]!))/2); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 02 2021

Formula

Average of A000088 and A000171.

Extensions

More terms from Vladeta Jovovic, Jul 19 2000
Terms a(18) and beyond from Andrew Howroyd, Sep 17 2018