cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014261 Numbers that contain odd digits only.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 31, 33, 35, 37, 39, 51, 53, 55, 57, 59, 71, 73, 75, 77, 79, 91, 93, 95, 97, 99, 111, 113, 115, 117, 119, 131, 133, 135, 137, 139, 151, 153, 155, 157, 159, 171, 173, 175, 177, 179, 191, 193, 195, 197, 199, 311, 313, 315, 317, 319
Offset: 1

Views

Author

Keywords

Comments

Or, numbers whose product of digits is odd.
Complement of A007928; A196563(a(n)) = 0. - Reinhard Zumkeller, Oct 04 2011
If n is represented as a zerofree base-5 number (see A084545) according to n = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j = 0..m} c(d(j))*10^j, where c(k) = 1, 3, 5, 7, 9 for k = 1..5. - Hieronymus Fischer, Jun 06 2012

Examples

			a(10^3) = 13779.
a(10^4) = 397779.
a(10^5) = 11177779.
a(10^6) = 335777779.
		

Crossrefs

Subsequence of A059708 and of A225985. A066640 and A030096 are subsequences.

Programs

  • Haskell
    a014261 n = a014261_list !! (n-1)
    a014261_list = filter (all (`elem` "13579") . show) [1,3..]
    -- Reinhard Zumkeller, Jul 05 2011
    
  • Magma
    [ n : n in [1..129] | IsOdd(&*Intseq(n,10)) ];
    
  • Mathematica
    Select[Range[400], OddQ[Times@@IntegerDigits[#]] &] (* Alonso del Arte, Feb 21 2014 *)
  • PARI
    is(n)=Set(digits(n)%2)==[1] \\ Charles R Greathouse IV, Jul 06 2017
    
  • PARI
    a(n)={my(k=1); while(n>5^k, n-=5^k; k++); fromdigits([2*d+1 | d<-digits(5^k+n-1, 5)]) - 3*10^k} \\ Andrew Howroyd, Jan 17 2020
    
  • Python
    from itertools import islice, count
    def A014261(): return filter(lambda n: set(str(n)) <= {'1','3','5','7','9'}, count(1,2))
    A014261_list = list(islice(A014261(),20)) # Chai Wah Wu, Nov 22 2021
    
  • Python
    from itertools import count, islice, product
    def agen(): yield from (int("".join(p)) for d in count(1) for p in product("13579", repeat=d))
    print(list(islice(agen(), 60))) # Michael S. Branicky, Jan 13 2022

Formula

A121759(a(n)) = a(n); A000035(A007959(a(n))) = 1. - Reinhard Zumkeller, Nov 30 2007
From Reinhard Zumkeller, Aug 30 2009: (Start)
a(n+1) - a(n) = A164898(n). - Reinhard Zumkeller, Aug 30 2009
a(n+1) = h(a(n)) with h(x) = 1 + (if x mod 10 < 9 then x + x mod 2 else 10*h(floor(x/10)));
a(n) = f(n, 1) where f(n, x) = if n = 1 then x else f(n-1, h(x)). (End)
From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = Sum_{j = 0..m-1} ((2*b_j(n)+1) mod 10)*10^j, where b_j(n) = floor((4*n+1-5^m)/(4*5^j)), m = floor(log_5(4*n+1)).
a(1*(5^n-1)/4) = 1*(10^n-1)/9.
a(2*(5^n-1)/4) = 1*(10^n-1)/3.
a(3*(5^n-1)/4) = 5*(10^n-1)/9.
a(4*(5^n-1)/4) = 7*(10^n-1)/9.
a(5*(5^n-1)/4) = 10^n - 1.
a((5^n-1)/4 + 5^(n-1)-1) = (10^n-5)/5.
a(n) = (10^log_5(4*n+1)-1)/9 for n = (5^k-1)/4, k > 0.
a(n) < (10^log_5(4*n+1)-1)/9 for (5^k-1)/4 < n < (5^(k+1)-1)/4, k > 0.
a(n) <= 27/(9*2^log_5(9)-1)*(10^log_5(4*n+1)-1)/9 for n > 0, equality holds for n = 2.
a(n) > 0.776*10^log_5(4*n+1)-1)/9 for n > 0.
a(n) >= A001742(n), equality holds for n = (5^k-1)/4, k > 0.
a(n) = A084545(n) if and only if all digits of A084545(n) are 1, else a(n) > A084545(n).
G.f.: g(x)= (x^(1/4)*(1-x))^(-1) Sum_{j >= 0} 10^j*z(j)^(5/4)*(1-z(j))*(1 + 3*z(j) + 5*z(j)^2 + 7*z(j)^3 + 9*z(j)^4)/(1-z(j)^5), where z(j) = x^5^j.
Also: g(x) = (1/(1-x))*(h_(5,0)(x) + 2*h_(5,1)(x) + 2*h_(5,2)(x) + 2*h_(5,3)(x) + 2*h_(5,4)(x) - 9*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j >= 0} 10^j*x^((5^(j+1)-1)/4)*(x^5^j)^k/(1-(x^5^j)^5). (End)
a(n) = A225985(A226091(n)). - Reinhard Zumkeller, May 26 2013
Sum_{n>=1} 1/a(n) = A194181. - Bernard Schott, Jan 13 2022

Extensions

More terms from Robert G. Wilson v, Oct 18 2002
Examples and crossrefs added by Hieronymus Fischer, Jun 06 2012

A196563 Number of even digits in decimal representation of n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 04 2011

Keywords

Crossrefs

Programs

  • Haskell
    a196563 n = length [d | d <- show n, d `elem` "02468"]
    -- Reinhard Zumkeller, Feb 22 2012, Oct 04 2011
    
  • Maple
    A196563 := proc(n)
            if n =0 then
                    1;
            else
                    convert(n,base,10) ;
                    add(1-(d mod 2),d=%) ;
            end if:
    end proc: # R. J. Mathar, Jul 13 2012
  • Mathematica
    Table[Count[Mod[IntegerDigits[n],2],0][n],{n,0,100}] (* Zak Seidov, Oct 13 2015 *)
    Table[Count[IntegerDigits[n],?EvenQ],{n,0,120}] (* _Harvey P. Dale, Feb 22 2020 *)
  • PARI
    a(n) = #select(x->(!(x%2)), if (n, digits(n), [0])); \\ Michel Marcus, Oct 14 2015
    
  • Python
    def a(n): return sum(1 for d in str(n) if d in "02468")
    print([a(n) for n in range(100)]) # Michael S. Branicky, May 15 2022

Formula

a(n) = A055642(n) - A196564(n);
a(A014261(n)) = 0; a(A007928(n)) > 0.
From Hieronymus Fischer, May 30 2012: (Start)
a(n) = Sum_{j=0..m} (1 + floor(n/(2*10^j)) - floor(n/(2*10^j) + (1/2))), where m=floor(log_10(n)).
a(10*n+k) = a(n) + a(k), 0<=k<10, n>=1.
a(n) = a(floor(n/10))+a(n mod 10), n>=10.
a(n) = Sum_{j=0..m} a(floor(n/10^j) mod 10), n>=0.
a(A014263(n)) = 1 + floor(log_5(n-1)), n>1.
G.f.: g(x) = 1 + (1/(1-x))*Sum_{j>=0} x^(2*10^j)/(1+x^10^j). (End)

A103829 Sum of even digits less than sum of odd digits.

Original entry on oeis.org

0, 2, 4, 6, 8, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 34, 36, 38, 40, 41, 42, 43, 44, 46, 48, 56, 58, 60, 61, 62, 63, 64, 65, 66, 68, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 102, 104, 106, 108, 114, 116, 118, 120, 122, 124, 126, 128, 136, 138, 140, 141, 142, 144, 146
Offset: 1

Views

Author

Zak Seidov, Feb 17 2005

Keywords

Comments

0 is assumed as even digit: A005843, A004275, A007928. Sum of even digits equals sum of odd digits A036301.

Crossrefs

Programs

  • Mathematica
    Select[Range[300], Plus@@Select[IntegerDigits[ # ], OddQ]
    				
Showing 1-3 of 3 results.