cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A026004 a(n) = T(3n+1,n), where T = Catalan triangle (A008315).

Original entry on oeis.org

1, 3, 14, 75, 429, 2548, 15504, 95931, 600875, 3798795, 24192090, 154969620, 997490844, 6446369400, 41802112192, 271861216539, 1772528290407, 11582393855305, 75831424919250, 497337483739635, 3266814940064445
Offset: 0

Views

Author

Keywords

Comments

Number of standard tableaux of shape (2n+1,n). Example: a(1)=3 because in the top row we can have 134, 124, or 123 (but not 234). - Emeric Deutsch, May 23 2004
Number of noncrossing forests with n+2 vertices and two components. - Emeric Deutsch, May 31 2004

Crossrefs

Cf. A045722.

Programs

  • Mathematica
    Table[(n+2)/(2n+2)Binomial[3n+1,n],{n,0,20}] (* Harvey P. Dale, Jun 29 2011 *)
  • Maxima
    a(n):=sum((k+1)*binomial(n,k)*binomial(2*(n+1),n-k),k,0,n)/(n+1); /* Vladimir Kruchinin, Mar 01 2014 */
    
  • PARI
    a(n) = (n+2)/(2*n+2) * binomial(3*n+1, n); \\ Joerg Arndt, Mar 01 2014

Formula

a(n) = (n+2)/(2*n+2) * C(3*n+1, n). - Ralf Stephan, Apr 30 2004
G.f.: ((sqrt(x)*sin(2/3*arcsin((3*sqrt(3)*sqrt(x))/2)))/sqrt(4/3-9*x)-cos(1/3*arccos(1-(27*x)/2))+1)/(3*x). - conjectured by Harvey P. Dale, Jun 30 2011
G.f.: (2*g-1)/((3*g-1)*(g-1)^2) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
2*(n+1)*(2*n+1)*a(n) +(-43*n^2-3*n+6)*a(n-1) +12*(3*n-2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Jun 07 2013
a(n) = sum(k=0..n, (k+1)*binomial(n,k)*binomial(2*(n+1),n-k))/(n+1). - Vladimir Kruchinin, Mar 01 2014
a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(n+2). - Ilya Gutkovskiy, Nov 01 2017

Extensions

More terms from Ralf Stephan, Apr 30 2004

A026008 a(n) = T(n, floor(n/2)), where T = Catalan triangle (A008315).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 14, 28, 42, 90, 132, 297, 429, 1001, 1430, 3432, 4862, 11934, 16796, 41990, 58786, 149226, 208012, 534888, 742900, 1931540, 2674440, 7020405, 9694845, 25662825, 35357670, 94287120, 129644790, 347993910, 477638700, 1289624490, 1767263190
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of Catalan paths in Quadrant I from (0,0) to (n, gcd(n,2)). - Clark Kimberling, Jun 26 2004

Crossrefs

a(2n) = A000108(n+1), a(2n+1) = A000245(n+1).

Formula

a(2n) = C(2n+2, n+1)/(n+2), a(2n+1) = 3C(2n+2, n)/(n+3). - Ralf Stephan, Apr 30 2004
Conjecture: (n+5)*a(n) +(n+3)*a(n-1) +(-5*n-9)*a(n-2) -4*n*a(n-3) +4*(n-2)*a(n-4)=0. - R. J. Mathar, Jun 10 2013

A027302 a(n) = Sum_{k=0..floor((n-1)/2)} T(n,k) * T(n,k+1), with T given by A008315.

Original entry on oeis.org

1, 2, 9, 24, 95, 286, 1099, 3536, 13479, 45220, 172150, 594320, 2265003, 7983990, 30487175, 109174560, 417812417, 1514797020, 5810065898, 21275014800, 81775140083, 301892460012, 1162703549474, 4321730134624, 16675372590850, 62340424959176, 240949471232124
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of Dyck (n+2)-paths with UU spanning the midpoint. E.g., for n=2 the two Dyck 4-paths are UUDU.UDDD and UDUU.UDDD where dot marks the midpoint. - David Scambler, Feb 11 2011
Apparently also the number of returns to the left of or to the midpoint of all Dyck paths with semilength n+1. - David Scambler, Apr 30 2013

Programs

  • Mathematica
    a[n_] := With[{C = CatalanNumber}, Sum[C[k]*C[n+1-k], {k, 1, (n+1)/2}]]; Array[a, 30] (* Jean-François Alcover, May 01 2017 *)
  • Sage
    def C(n): return binomial(2*n,n)/(n+1)  # Catalan numbers
    def A027302(n): return add(C(k)*C(n+1-k) for k in (1..(n+1)/2))
    [A027302(n) for n in (1..22)]  # Peter Luschny, Jun 27 2013

Formula

Conjecture D-finite with recurrence -(n+2)*(13*n-2)*(3+n)^2*a(n) +10*(8*n^2+3*n-8)*(n+2)^2*a(n-1) +8*(12*n^4+47*n^3+52*n^2+67*n+20)*a(n-2) -160*(8*n^2+3*n-8)*(n-1)^2*a(n-3) +128*(7*n+4)*(2*n-5)*(-2+n)^2*a(n-4)=0. - R. J. Mathar, Nov 22 2024

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A026005 a(n) = T(4*n,n), where T = Catalan triangle (A008315).

Original entry on oeis.org

1, 4, 27, 208, 1700, 14364, 123970, 1085760, 9612108, 85795600, 770755843, 6960408624, 63127818572, 574609830760, 5246348656500, 48027225765120, 440671237120764, 4051508174260272, 37315784743418332
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    Table[(2 n+2)/(3 n+2) Binomial[4 n+1, n], {n, 0, 20}] (* Vaclav Kotesovec, Dec 02 2016 *)
  • PARI
    a(n) = (2*n+2)/(3*n+2)*binomial(4*n+1,n)

Formula

a(n) = (2n+2)/(3n+2) * C(4n+1, n). - Ralf Stephan, Apr 30 2004
a(n) = C(4n,n)-C(4n,n-2)=A039598(2n,n). - Paul Barry, Apr 21 2009
G.f.: (g-2)*g^2/(3*g-4) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
Conjecture: 9*n*(3*n+2)*(3*n+1)*a(n) +12*(-55*n^3-59*n^2+65*n-11)*a(n-1) -32*(4*n-5)*(4*n-3)*(2*n-3)*a(n-2)=0. - R. J. Mathar, May 22 2013
a(n) = Sum_{k=0..n}((n+k+1)*binomial(n+k,k)*binomial(3*n-k,n-k))/(2*n+1). - Vladimir Kruchinin, Dec 02 2016
a(n) ~ 2^(8*n+7/2)*3^(-3*n-5/2)/sqrt(Pi*n). - Ilya Gutkovskiy, Dec 02 2016

Extensions

More terms from Ralf Stephan, Apr 30 2004

A052173 Another version of the Catalan triangle A008315.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 0, 2, 1, 0, 4, 0, 5, 0, 1, 0, 5, 0, 9, 0, 5, 1, 0, 6, 0, 14, 0, 14, 0, 1, 0, 7, 0, 20, 0, 28, 0, 14, 1, 0, 8, 0, 27, 0, 48, 0, 42, 0, 1, 0, 9, 0, 35, 0, 75, 0, 90, 0, 42, 1, 0, 10, 0, 44, 0, 110, 0, 165, 0, 132, 0, 1, 0, 11, 0, 54, 0, 154, 0, 275, 0, 297, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2000

Keywords

Examples

			1;
1 0;
1 0 1;
1 0 2 0;
1 0 3 0 2;
1 0 4 0 5 0;
1 0 5 0 9 0 5;
...
		

Crossrefs

See A008315 (the main entry for this triangle) for more information.
Reflection of A053121.

Formula

a(n, k) = a(n-1, k-2)+a(n-1, k) with a(0, 0)=1 and a(n, k)=0 if k < 0 or k > n.

Extensions

More terms from Henry Bottomley, Aug 23 2001

A108786 Yet another version of the Catalan triangle A008315.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 9, 5, 1, 6, 14, 14, 1, 7, 20, 28, 14, 1, 8, 27, 48, 42, 1, 9, 35, 75, 90, 42, 1, 10, 44, 110, 165, 132, 1, 11, 54, 154, 275, 297, 132, 1, 12, 65, 208, 429, 572, 429, 1, 13, 77, 273, 637, 1001, 1001, 429, 1, 14, 90, 350, 910, 1638, 2002
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2006

Keywords

Examples

			.......|...1
.......|.......1
.......|...1.......1
.......|.......2.......1
.......|...2.......3.......1
.......|.......5.......4.......1
.......|...5.......9.......5.......1
.......|......14......14.......6.......1
.......|..14......28......20.......7.......1
.......|......42......48......27.......8.......1
		

References

  • J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)

Crossrefs

See A008315 (the main entry for this triangle) for more information.

Programs

  • Maple
    A008315 := proc(n,k)
        binomial(n,k)-binomial(n,k-1) ;
    end:
    for n from 0 to 30 do
        for k from 0 to n/2 do
            printf("%d, ",A008315(n,k)) ;
        od:
    od: # R. J. Mathar, Feb 13 2008

A027301 a(n) = self-convolution of row n of Catalan triangle (A008315).

Original entry on oeis.org

1, 2, 4, 13, 26, 100, 196, 820, 1581, 6954, 13244, 60214, 113620, 528840, 990756, 4692780, 8741876, 41970280, 77824912, 377687453, 697689538, 3415756084, 6289798684, 31018849628, 56964451670, 282658474700, 517885177320
Offset: 0

Views

Author

Keywords

A027303 a(n) = Sum_{k=0..floor((n-3)/2)} T(n,k) * T(n,k+2), with T given by A008315.

Original entry on oeis.org

2, 5, 34, 98, 496, 1545, 7010, 22924, 98636, 333463, 1393014, 4824350, 19795200, 69818507, 283195638, 1013208668, 4078132240, 14758843463, 59087809638, 215859015800, 860951003152, 3169965920150, 12609168181324, 46735070397768, 185532421441976, 691582241867227
Offset: 3

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027304 a(n) = Sum_{k=0..floor((n-5)/2)} T(n,k) * T(n,k+1), with T given by A008315.

Original entry on oeis.org

5, 14, 126, 384, 2355, 7568, 39545, 131768, 632177, 2162510, 9853892, 34384064, 151498203, 536917884, 2311543325, 8295107912, 35123988977, 127340511540, 532611748052, 1947506206400, 8069978842770, 29721855687264, 122273332182351, 453128454670472
Offset: 5

Views

Author

Keywords

Crossrefs

Cf. A008315.

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027305 a(n) = Sum_{k=0..floor((n+1)/2)} (k+1) * A008315(n, k).

Original entry on oeis.org

1, 3, 5, 13, 24, 58, 111, 257, 500, 1126, 2210, 4882, 9632, 20980, 41531, 89497, 177564, 379438, 754014, 1600406, 3184016, 6720748, 13382710, 28117498, 56026984, 117254268, 233765636, 487589572, 972504704, 2022568168
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A065982.

Formula

a(2n) = A065982(n+1)/2 = (n+2)*binomial(2n+2, n+1)/2 - 4^n.
Showing 1-10 of 32 results. Next