A026004 a(n) = T(3n+1,n), where T = Catalan triangle (A008315).
1, 3, 14, 75, 429, 2548, 15504, 95931, 600875, 3798795, 24192090, 154969620, 997490844, 6446369400, 41802112192, 271861216539, 1772528290407, 11582393855305, 75831424919250, 497337483739635, 3266814940064445
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- P. Flajolet and M. Noy, Analytic combinatorics of noncrossing configurations, Discrete Math. 204 (1999), 203-229.
Crossrefs
Cf. A045722.
Programs
-
Mathematica
Table[(n+2)/(2n+2)Binomial[3n+1,n],{n,0,20}] (* Harvey P. Dale, Jun 29 2011 *)
-
Maxima
a(n):=sum((k+1)*binomial(n,k)*binomial(2*(n+1),n-k),k,0,n)/(n+1); /* Vladimir Kruchinin, Mar 01 2014 */
-
PARI
a(n) = (n+2)/(2*n+2) * binomial(3*n+1, n); \\ Joerg Arndt, Mar 01 2014
Formula
a(n) = (n+2)/(2*n+2) * C(3*n+1, n). - Ralf Stephan, Apr 30 2004
G.f.: ((sqrt(x)*sin(2/3*arcsin((3*sqrt(3)*sqrt(x))/2)))/sqrt(4/3-9*x)-cos(1/3*arccos(1-(27*x)/2))+1)/(3*x). - conjectured by Harvey P. Dale, Jun 30 2011
G.f.: (2*g-1)/((3*g-1)*(g-1)^2) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
2*(n+1)*(2*n+1)*a(n) +(-43*n^2-3*n+6)*a(n-1) +12*(3*n-2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Jun 07 2013
a(n) = sum(k=0..n, (k+1)*binomial(n,k)*binomial(2*(n+1),n-k))/(n+1). - Vladimir Kruchinin, Mar 01 2014
a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(n+2). - Ilya Gutkovskiy, Nov 01 2017
Extensions
More terms from Ralf Stephan, Apr 30 2004
Comments