A368567
Number of Young tableaux of shape [n, floor(n/2)].
Original entry on oeis.org
1, 1, 2, 3, 9, 14, 48, 75, 275, 429, 1638, 2548, 9996, 15504, 62016, 95931, 389367, 600875, 2466750, 3798795, 15737865, 24192090, 100975680, 154969620, 650872404, 997490844, 4211628008, 6446369400, 27341497800, 41802112192, 177996090624, 271861216539, 1161588834303, 1772528290407, 7596549816030, 11582393855305
Offset: 0
-
a:= proc(n) option remember; `if`(n<3, [1$2, 2][n+1],
(4*n*(3027*n^2-10201*n+4134)*a(n-1)+6*(729*n^3-6201*n^2+9177*n-4921)*
a(n-2)-3*(3*n-7)*(3027*n+1907)*(3*n-8)*a(n-3))/(8*(n+1)*n*(81*n-689)))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 01 2025
A094021
Triangle read by rows: T(n,k) is the number of noncrossing forests with n vertices and k components (1<=k<=n).
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 12, 14, 6, 1, 55, 75, 40, 10, 1, 273, 429, 275, 90, 15, 1, 1428, 2548, 1911, 770, 175, 21, 1, 7752, 15504, 13328, 6370, 1820, 308, 28, 1, 43263, 95931, 93024, 51408, 17640, 3822, 504, 36, 1, 246675, 600875, 648945, 406980, 162792, 42840
Offset: 1
From _Andrew Howroyd_, Nov 17 2017: (Start)
Triangle begins:
1;
1, 1;
3, 3, 1;
12, 14, 6, 1;
55, 75, 40, 10, 1;
273, 429, 275, 90, 15, 1;
1428, 2548, 1911, 770, 175, 21, 1;
7752, 15504, 13328, 6370, 1820, 308, 28, 1;
(End)
T(3,2)=3 because, with A,B,C denoting the vertices of a triangle, we have the 2-component forests (A,BC), (B,CA) and (C,AB).
-
T:=proc(n,k) if k<=n then binomial(n,k-1)*binomial(3*n-2*k-1,n-k)/(2*n-k) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..11);
-
T[n_, k_] := If[k <= n, Binomial[n, k-1]*Binomial[3n-2k-1, n-k]/(2n-k), 0];
Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 06 2018 *)
-
T(n,k)=binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k);
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017
A045722
Number of border edges in all noncrossing rooted trees on n nodes.
Original entry on oeis.org
1, 6, 28, 150, 858, 5096, 31008, 191862, 1201750, 7597590, 48384180, 309939240, 1994981688, 12892738800, 83604224384, 543722433078, 3545056580814, 23164787710610, 151662849838500, 994674967479270, 6533629880128890
Offset: 1
-
MapAt[# - 1 &, Array[(# + 1) Binomial[3 # - 2, # - 1]/# &, 21], 1] (* Michael De Vlieger, Mar 19 2021 *)
A094040
Triangle read by rows: T(n,k) is the number of noncrossing forests with n vertices and k edges.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 6, 14, 12, 1, 10, 40, 75, 55, 1, 15, 90, 275, 429, 273, 1, 21, 175, 770, 1911, 2548, 1428, 1, 28, 308, 1820, 6370, 13328, 15504, 7752, 1, 36, 504, 3822, 17640, 51408, 93024, 95931, 43263, 1, 45, 780, 7350, 42840, 162792, 406980, 648945, 600875, 246675
Offset: 1
Triangle begins:
1;
1, 1;
1, 3, 3;
1, 6, 14, 12;
1, 10, 40, 75, 55;
1, 15, 90, 275, 429, 273;
1, 21, 175, 770, 1911, 2548, 1428;
...
T(3,1)=3 because the noncrossing forests on 3 vertices A,B,C and having one edge are (A, BC), (B, CA) and (C, AB).
-
T:=proc(n,k) if k<=n-1 then binomial(n,k+1)*binomial(n+2*k-1,k)/(n+k) else 0 fi end: seq(seq(T(n,k),k=0..n-1),n=1..11);
-
T[n_, k_] := Binomial[n, k+1] Binomial[n+2k-1, k]/(n+k);
Table[T[n, k], {n, 1, 11}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
-
T(n,k)=binomial(n, k+1)*binomial(n+2*k-1, k)/(n+k);
for(n=1, 10, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017
A277956
a(n) = (n+2)*Sum_{i=0..n}(binomial(3*n-2*i+1, n-i)/(2*n-i+2)).
Original entry on oeis.org
1, 4, 19, 101, 573, 3382, 20483, 126292, 788878, 4976489, 31635811, 202354517, 1300880374, 8398175713, 54409200963, 353571026085, 2303666554659, 15043760670031, 98439176169692, 645290365460761, 4236768489465944, 27857102370774193
Offset: 0
-
h := n -> hypergeom([1,-2*n-2,-n],[-3*n/2-1/2,-3*n/2],1/4):
b := n -> binomial(3*n+1,n)*(n+2)/(2*n+2): # A026004
a := n -> `if`(n=0,1,b(n)*simplify(h(n))):
seq(a(n), n=0..21); # Peter Luschny, Nov 06 2016
-
f[n_] := (n + 2)Sum[ Binomial[3n - 2i + 1, n - i]/(2n - i + 2), {i, 0, n}]; Array[f, 22, 0] (* Robert G. Wilson v, Nov 06 2016 *)
-
F(x):=x*(2/sqrt(3*x))*sin((1/3)*asin(sqrt(27*x/4)));
taylor(diff(F(x),x)*F(x)/(1-F(x))/x,x,0,10);
-
for(n=0,25, print1((n+2)*sum(i=0,n,(binomial(3*n-2*i+1, n-i)/(2*n-i+2))), ", ")) \\ G. C. Greubel, Apr 09 2017
A139816
Final nonzero terms in rows of A139801.
Original entry on oeis.org
1, 2, 3, 9, 14, 48, 75, 275, 429, 1638
Offset: 0
Showing 1-6 of 6 results.
Comments