cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A368567 Number of Young tableaux of shape [n, floor(n/2)].

Original entry on oeis.org

1, 1, 2, 3, 9, 14, 48, 75, 275, 429, 1638, 2548, 9996, 15504, 62016, 95931, 389367, 600875, 2466750, 3798795, 15737865, 24192090, 100975680, 154969620, 650872404, 997490844, 4211628008, 6446369400, 27341497800, 41802112192, 177996090624, 271861216539, 1161588834303, 1772528290407, 7596549816030, 11582393855305
Offset: 0

Views

Author

Joerg Arndt, Dec 30 2023

Keywords

Comments

Seemingly also the number of Catalan words of length n with at least ceiling(n/2) zeros. - Sela Fried, Jun 01 2025

Crossrefs

Cf. A174687 (shape [2*n, n]), A026004 (shape [2*n+1, n]).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1$2, 2][n+1],
          (4*n*(3027*n^2-10201*n+4134)*a(n-1)+6*(729*n^3-6201*n^2+9177*n-4921)*
          a(n-2)-3*(3*n-7)*(3027*n+1907)*(3*n-8)*a(n-3))/(8*(n+1)*n*(81*n-689)))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 01 2025

Formula

a(2*n) = A174687(n/2), a(2*n+1) = A026004(n).

A094021 Triangle read by rows: T(n,k) is the number of noncrossing forests with n vertices and k components (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 12, 14, 6, 1, 55, 75, 40, 10, 1, 273, 429, 275, 90, 15, 1, 1428, 2548, 1911, 770, 175, 21, 1, 7752, 15504, 13328, 6370, 1820, 308, 28, 1, 43263, 95931, 93024, 51408, 17640, 3822, 504, 36, 1, 246675, 600875, 648945, 406980, 162792, 42840
Offset: 1

Views

Author

Emeric Deutsch, May 31 2004

Keywords

Examples

			From _Andrew Howroyd_, Nov 17 2017: (Start)
Triangle begins:
     1;
     1,     1;
     3,     3,     1;
    12,    14,     6,    1;
    55,    75,    40,   10,    1;
   273,   429,   275,   90,   15,   1;
  1428,  2548,  1911,  770,  175,  21,  1;
  7752, 15504, 13328, 6370, 1820, 308, 28, 1;
(End)
T(3,2)=3 because, with A,B,C denoting the vertices of a triangle, we have the 2-component forests (A,BC), (B,CA) and (C,AB).
		

Crossrefs

Columns k=1..2 are A001764, A026004.
Row sums are A054727.
Cf. A000108.

Programs

  • Maple
    T:=proc(n,k) if k<=n then binomial(n,k-1)*binomial(3*n-2*k-1,n-k)/(2*n-k) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..11);
  • Mathematica
    T[n_, k_] := If[k <= n, Binomial[n, k-1]*Binomial[3n-2k-1, n-k]/(2n-k), 0];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 06 2018 *)
  • PARI
    T(n,k)=binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k);
    for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017

Formula

T(n, k) = binomial(n, k-1)*binomial(3n-2k-1, n-k)/(2n-k).
G.f.: G=G(t, z) satisfies G^3+(t^3*z^2-t^2*z-3)G^2+(t^2*z+3)G-1=0.
From Peter Bala, Nov 07 2015: (Start)
O.g.f. A(x,t) = revert( x/((1 + x*t)*C(x)) ) with respect to x, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f for the Catalan numbers A000108.
Row sums are A054727. (End)

A045722 Number of border edges in all noncrossing rooted trees on n nodes.

Original entry on oeis.org

1, 6, 28, 150, 858, 5096, 31008, 191862, 1201750, 7597590, 48384180, 309939240, 1994981688, 12892738800, 83604224384, 543722433078, 3545056580814, 23164787710610, 151662849838500, 994674967479270, 6533629880128890
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    MapAt[# - 1 &, Array[(# + 1) Binomial[3 # - 2, # - 1]/# &, 21], 1] (* Michael De Vlieger, Mar 19 2021 *)

Formula

a(n) = (n+1)*binomial(3n-2, n-1)/n for n >= 2. [Corrected by Sean A. Irvine, Mar 19 2021]
G.f.: (1+g-7*g^2+3*g^3)/((1-3*g)*(g-1)^2) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
D-finite with recurrence 2*n*(2*n-1)*a(n) + (-43*n^2+83*n-34)*a(n-1) + 12*(3*n-5)*(3*n-7)*a(n-2) = 0. - R. J. Mathar, Jul 26 2022
a(n) = (n+1) * A006013(n-1) for n >= 2. - F. Chapoton, Feb 27 2024

A094040 Triangle read by rows: T(n,k) is the number of noncrossing forests with n vertices and k edges.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 14, 12, 1, 10, 40, 75, 55, 1, 15, 90, 275, 429, 273, 1, 21, 175, 770, 1911, 2548, 1428, 1, 28, 308, 1820, 6370, 13328, 15504, 7752, 1, 36, 504, 3822, 17640, 51408, 93024, 95931, 43263, 1, 45, 780, 7350, 42840, 162792, 406980, 648945, 600875, 246675
Offset: 1

Views

Author

Emeric Deutsch, May 31 2004

Keywords

Comments

T(n,n-1) yields A001764; T(n,n-2) yields A026004.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   3;
  1,  6,  14,  12;
  1, 10,  40,  75,   55;
  1, 15,  90, 275,  429,  273;
  1, 21, 175, 770, 1911, 2548, 1428;
  ...
T(3,1)=3 because the noncrossing forests on 3 vertices A,B,C and having one edge are (A, BC), (B, CA) and (C, AB).
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n-1 then binomial(n,k+1)*binomial(n+2*k-1,k)/(n+k) else 0 fi end: seq(seq(T(n,k),k=0..n-1),n=1..11);
  • Mathematica
    T[n_, k_] := Binomial[n, k+1] Binomial[n+2k-1, k]/(n+k);
    Table[T[n, k], {n, 1, 11}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
  • PARI
    T(n,k)=binomial(n, k+1)*binomial(n+2*k-1, k)/(n+k);
    for(n=1, 10, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017

Formula

T(n, k)=binomial(n, k+1)*binomial(n+2k-1, k)/(n+k) (0<=k<=n-1).

A277956 a(n) = (n+2)*Sum_{i=0..n}(binomial(3*n-2*i+1, n-i)/(2*n-i+2)).

Original entry on oeis.org

1, 4, 19, 101, 573, 3382, 20483, 126292, 788878, 4976489, 31635811, 202354517, 1300880374, 8398175713, 54409200963, 353571026085, 2303666554659, 15043760670031, 98439176169692, 645290365460761, 4236768489465944, 27857102370774193
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 05 2016

Keywords

Crossrefs

Programs

  • Maple
    h := n -> hypergeom([1,-2*n-2,-n],[-3*n/2-1/2,-3*n/2],1/4):
    b := n -> binomial(3*n+1,n)*(n+2)/(2*n+2): # A026004
    a := n -> `if`(n=0,1,b(n)*simplify(h(n))):
    seq(a(n), n=0..21); # Peter Luschny, Nov 06 2016
  • Mathematica
    f[n_] := (n + 2)Sum[ Binomial[3n - 2i + 1, n - i]/(2n - i + 2), {i, 0, n}]; Array[f, 22, 0] (* Robert G. Wilson v, Nov 06 2016 *)
  • Maxima
    F(x):=x*(2/sqrt(3*x))*sin((1/3)*asin(sqrt(27*x/4)));
    taylor(diff(F(x),x)*F(x)/(1-F(x))/x,x,0,10);
    
  • PARI
    for(n=0,25, print1((n+2)*sum(i=0,n,(binomial(3*n-2*i+1, n-i)/(2*n-i+2))), ", ")) \\ G. C. Greubel, Apr 09 2017

Formula

G.f.: F'(x)*F(x)/(1-F(x))/x, where F(x)/x is g.f. of A001764.
From Vaclav Kotesovec, Nov 06 2016: (Start)
Recurrence: 2*(n+1)*(2*n + 1)*(91*n^4 - 232*n^3 + 15*n^2 + 266*n - 120)*a(n) = (2821*n^6 - 4189*n^5 - 10027*n^4 + 18573*n^3 - 3498*n^2 - 3968*n + 960)*a(n-1) - (2821*n^6 - 4189*n^5 - 10027*n^4 + 18573*n^3 - 3498*n^2 - 3968*n + 960)*a(n-2) + 3*(3*n - 5)*(3*n - 4)*(91*n^4 + 132*n^3 - 135*n^2 - 36*n + 20)*a(n-3).
a(n) ~ 3^(3*n+7/2) / (7 * sqrt(Pi*n) * 2^(2*n+3)). (End)
a(n) = A026004(n)*hypergeom([1,-2*n-2,-n],[-3*n/2-1/2,-3*n/2],1/4). - Peter Luschny, Nov 06 2016

A139816 Final nonzero terms in rows of A139801.

Original entry on oeis.org

1, 2, 3, 9, 14, 48, 75, 275, 429, 1638
Offset: 0

Views

Author

Paul Curtz, Jun 14 2008

Keywords

Formula

First bisection a(2n) = 1, 3, 14, 75, 429, ... =A026004.
Showing 1-6 of 6 results.