cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A164318 Primes p such that the sum of divisors of p-1 is larger than 2*p.

Original entry on oeis.org

13, 19, 31, 37, 41, 43, 61, 67, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 139, 151, 157, 163, 181, 193, 197, 199, 211, 223, 229, 241, 271, 277, 281, 283, 307, 313, 331, 337, 349, 353, 367, 373, 379, 397, 401, 409, 421, 433, 439, 449, 457, 461, 463, 487, 491
Offset: 1

Views

Author

Keywords

Examples

			p=13 is in the sequence because A000203(12) = A008332(6) = 28 > 2*p.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]],DivisorSigma[1,#-1]>2#&]  (* Harvey P. Dale, Mar 31 2011 *)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A092590 a(n) = A065395(A000040(n)); values of commutator of sigma and phi function at prime number arguments.

Original entry on oeis.org

-1, 1, 5, 8, 14, 22, 25, 31, 28, 48, 56, 73, 78, 76, 56, 80, 74, 138, 112, 120, 159, 136, 102, 156, 210, 185, 168, 126, 240, 212, 248, 212, 226, 240, 226, 300, 314, 283, 204, 252, 222, 474, 296, 412, 339, 388, 472, 360, 270, 472, 378, 368, 634, 396, 427, 316, 404, 592, 534, 628, 436, 434, 582, 480, 684, 456, 700, 836
Offset: 1

Views

Author

Labos Elemer, Mar 03 2004

Keywords

Comments

The sequence differs from A065394 since it is not monotonic.

Examples

			a(1) = sigma(phi(2))- phi(sigma(2)) = sigma(1)-phi(3) = 1-2 = -1.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,EulerPhi(p))-EulerPhi(DivisorSigma(1,p)): p in PrimesUpTo(400)]; // Bruno Berselli, Oct 20 2015
  • Mathematica
    Table[DivisorSigma[1, p-1] - EulerPhi[p+1], {p, Prime[Range[100]]}] (* Amiram Eldar, Jun 09 2024 *)

Formula

a(n) = sigma(prime(n)-1) - phi(prime(n)+1) = A008332(n) - A008331(n). - Amiram Eldar, Jun 09 2024

A174843 Irregular triangle in which row n lists the divisors of prime(n)-1.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 3, 6, 1, 2, 5, 10, 1, 2, 3, 4, 6, 12, 1, 2, 4, 8, 16, 1, 2, 3, 6, 9, 18, 1, 2, 11, 22, 1, 2, 4, 7, 14, 28, 1, 2, 3, 5, 6, 10, 15, 30, 1, 2, 3, 4, 6, 9, 12, 18, 36, 1, 2, 4, 5, 8, 10, 20, 40, 1, 2, 3, 6, 7, 14, 21, 42, 1, 2, 23, 46, 1, 2, 4, 13, 26, 52, 1, 2, 29, 58, 1, 2, 3, 4
Offset: 1

Views

Author

T. D. Noe, Mar 30 2010

Keywords

Comments

Row n begins with 1, ends with prime(n)-1, and has A008328(n) terms.

Examples

			The first 10 rows:
  1
  1, 2
  1, 2, 4
  1, 2, 3, 6
  1, 2, 5, 10
  1, 2, 3, 4, 6, 12
  1, 2, 4, 8, 16
  1, 2, 3, 6, 9, 18
  1, 2, 11, 22
  1, 2, 4, 7, 14, 28
		

Crossrefs

Cf. A008328 (row lengths), A008332 (row sums).

Programs

  • Mathematica
    Flatten[Table[Divisors[p-1], {p, Prime[Range[100]]}]]
  • PARI
    row(n) = divisors(prime(n)-1); \\ Amiram Eldar, May 02 2025

A067758 Numbers k such that sigma(prime(k) - 1) == 0 (mod k).

Original entry on oeis.org

1, 4, 9, 27, 42, 60, 64, 70, 78, 144, 168, 180, 216, 238, 260, 318, 558, 600, 672, 960, 1008, 1053, 1260, 1620, 1806, 2112, 3318, 3780, 4608, 5544, 12152, 40084, 40095, 41664, 47040, 48825, 49176, 51870, 59832, 60528, 71040, 99008, 100356, 113904, 132000, 159000
Offset: 1

Views

Author

Benoit Cloitre, Feb 05 2002

Keywords

Comments

There are 91 terms up to and including 10 million. - Harvey P. Dale, Oct 04 2016

Crossrefs

Programs

  • Mathematica
    Select[Range[120000],Divisible[DivisorSigma[1,Prime[#]-1],#]&] (* Harvey P. Dale, Oct 04 2016 *)
  • PARI
    for(k=1,120000, if(sigma(prime(k)-1)%k==0,print1(k,",")))

Extensions

More terms from Klaus Brockhaus, Feb 07 2002

A326391 Lesser of twin primes p >= 3 for which sigma(p+1)/sigma(p-1) reaches record value, where sigma(n) is the divisor sum function (A000203).

Original entry on oeis.org

3, 7559, 42839, 55439, 110879, 415799, 1713599, 1940399, 2489759, 6652799, 6846839, 15855839, 31600799, 85765679, 232792559, 845404559, 1470268799, 6299092799, 10708457759, 17459441999, 32125373279, 135019684799, 439977938399, 449755225919, 1799020903679, 2126560035599, 2835413380799, 6278415343199
Offset: 1

Views

Author

Amiram Eldar, Sep 11 2019

Keywords

Comments

Garcia et al. proved that assuming Dickson's conjecture, {sigma(p+1)/sigma(p-1) : p and p+2 are prime} is dense in [0, oo), and thus this sequence is infinite.

Examples

			The values of sigma(p+1)/sigma(p-1) for the first terms are 2.333... < 2.539... < 2.621... < 2.734... < 2.836...
		

Crossrefs

Programs

  • Mathematica
    s = {}; rm = 0; p = 2; Do[q = NextPrime[p]; If[q - p != 2, p = q; Continue[]]; r = DivisorSigma[1, p + 1]/DivisorSigma[1, p - 1]; If[r > rm, rm = r; AppendTo[s, p]]; p = q, {10^6}]; s

Extensions

a(22)-a(28) from Giovanni Resta, Nov 01 2019
Showing 1-5 of 5 results.