A008364 11-rough numbers: not divisible by 2, 3, 5 or 7.
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209, 211, 221, 223, 227, 229, 233, 239, 241, 247
Offset: 1
References
- Diatomic sequence of 4th prime: A. de Polignac (1849), J. Dechamps (1907).
- Dickson L. E., History of the Theory of Numbers, Vol. 1, p. 439, Chelsea, 1952.
- K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1980.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Alphonse de Polignac, Recherches Nouvelles sur les Nombres Premiers, in Comptes Rendus de l'Académie des Sciences, October 15 1849. See also Rectification.
- Alphonse de Polignac, Six propositions arithmologiques déduites du crible d'Ératosthène, Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale, Série 1, Tome 8 (1849), pp. 423-429.
- Han-Lin Li, Shu-Cherng Fang, and Way Kuo, The Periodic Table of Primes, Advances in Pure Mathematics, Volume 14, Issue 5, May 2024.
- Eric Weisstein's World of Mathematics, Rough Number
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
- Index entries for sequences related to smooth numbers
Crossrefs
Programs
-
Haskell
a008364 n = a008364_list !! (n-1) a008364_list = 1 : filter ((> 7) . a020639) [1..] -- Reinhard Zumkeller, Mar 26 2012
-
Maple
for i from 1 to 500 do if gcd(i,210) = 1 then print(i); fi; od; t1:=[]; for i from 1 to 1000 do if gcd(i,210) = 1 then t1:=[op(t1),i]; fi; od: t1; S:= (j,n)-> sum(k^j,k=1..n): for n from 1 to 247 do if (S(4,n) mod n = 0) and (S(6,n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 20 2011
-
Mathematica
Select[ Range[ 300 ], GCD[ #1, 210 ] == 1 & ] Select[Range[250], Mod[#, 2]>0 && Mod[#, 3]>0 && Mod[#, 5]>0 && Mod[#, 7]>0 &] (* Vincenzo Librandi, Nov 16 2015 *) Cases[Range@1000, x_ /; NoneTrue[Array[Prime, 4], Divisible[x, #] &]] (* Mikk Heidemaa, Dec 07 2017 *) Select[Range[250],Union[Divisible[#,{2,3,5,7}]]=={False}&] (* Harvey P. Dale, Sep 24 2021 *)
-
PARI
isA008364(n) = gcd(n,210)==1 \\ Michael B. Porter, Oct 10 2009
Formula
Starting with a(49) = 211, a(n) = a(n-48) + 210. - Zak Seidov, Apr 11 2011
a(n) = a(n-1) + a(n-48) - a(n-49). - Charles R Greathouse IV, Dec 21 2011
A020639(a(n)) > 7. - Reinhard Zumkeller, Mar 26 2012
G.f.: x*(x^48 + 10*x^47 + 2*x^46 + 4*x^45 + 2*x^44 + 4*x^43 + 6*x^42 + 2*x^41 + 6*x^40 + 4*x^39 + 2*x^38 + 4*x^37 + 6*x^36 + 6*x^35 + 2*x^34 + 6*x^33 + 4*x^32 + 2*x^31 + 6*x^30 + 4*x^29 + 6*x^28 + 8*x^27 + 4*x^26 + 2*x^25 + 4*x^24 + 2*x^23 + 4*x^22 + 8*x^21 + 6*x^20 + 4*x^19 + 6*x^18 + 2*x^17 + 4*x^16 + 6*x^15 + 2*x^14 + 6*x^13 + 6*x^12 + 4*x^11 + 2*x^10 + 4*x^9 + 6*x^8 + 2*x^7 + 6*x^6 + 4*x^5 + 2*x^4 + 4*x^3 + 2*x^2 + 10*x + 1) / (x^49 - x^48 - x + 1). - Colin Barker, Sep 27 2013
a(n) = 35*n/8 + O(1). - Charles R Greathouse IV, Sep 14 2015
Extensions
New name from Charles R Greathouse IV, Dec 21 2011 based on comment from Michael B. Porter, Oct 10 2009
Comments