A008417 Crystal ball sequence for 8-dimensional cubic lattice.
1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777, 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145, 628496897, 872893441, 1196924561, 1621925137, 2173806145, 2883810113, 3789356689, 4934985233
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Index entries for crystal ball sequences
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
Programs
-
Mathematica
CoefficientList[Series[-(z + 1)^8/(z - 1)^9, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,17,145,833,3649,13073,40081,108545,265729},40] (* Harvey P. Dale, May 26 2024 *)
Formula
G.f.: (1+x)^8/(1-x)^9.
First differences of A099196. - Alexander Adamchuk, May 23 2006
a(n) = (2*n^8 + 8*n^7 + 84*n^6 + 224*n^5 + 798*n^4 + 1232*n^3 + 1636*n^2 + 1056*n + 315)/315. - Alexander Adamchuk, May 23 2006
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = log(2) - (1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 - 1/8). - Peter Bala, Mar 23 2024
Extensions
More terms from Alexander Adamchuk, May 23 2006
Comments