A008514 4-dimensional centered cube numbers.
1, 17, 97, 337, 881, 1921, 3697, 6497, 10657, 16561, 24641, 35377, 49297, 66977, 89041, 116161, 149057, 188497, 235297, 290321, 354481, 428737, 514097, 611617, 722401, 847601, 988417, 1146097, 1321937, 1517281, 1733521, 1972097, 2234497, 2522257, 2836961, 3180241
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
GAP
List([0..30],n->n^4+(n+1)^4); # Muniru A Asiru, Aug 02 2018
-
Magma
[(n+1)^4+n^4: n in [0..30]]; // Vincenzo Librandi, Aug 27 2011
-
Maple
seq(n^4+(n+1)^4, n=0..40);
-
Mathematica
Total/@Partition[Range[0, 30]^4, 2, 1] (* or *) LinearRecurrence[{5,-10, 10,-5,1}, {1,17,97,337,881}, 30] (* Harvey P. Dale, Jan 28 2013 *)
-
PARI
a(n) = n^4 + (n+1)^4; \\ Altug Alkan, Aug 01 2018
-
Sage
[i^4+(i+1)^4 for i in range(0,36)] # Zerinvary Lajos, Jul 03 2008
Formula
a(n) = n^4 + (n+1)^4.
a(n) = 2*n^4 + 4*n^3 + 6*n^2 + 4*n + 1. - Al Hakanson (hawkuu(AT)gmail.com), May 27 2009, corrected R. J. Mathar, May 29 2009
G.f.: (1+10*x+x^2)*(1+x)^2/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 09 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(0) = 1, a(1) = 17, a(2) = 97, a(3) = 337, a(4) = 881. - Harvey P. Dale, Jan 28 2013
a(n) = 4*(n+n^2) + 2*(n+n^2)^2 + 1. - Avi Friedlich, Mar 31 2015
a(n) = 2*A002061(n+1)^2 - 1. - Bruce J. Nicholson, Apr 14 2017
a(n) = A047838(2*(n^2+n+1)). - David James Sycamore, Aug 01 2018
E.g.f.: (1 + 16*x + 32*x^2 + 16*x^3 + 2*x^4)*exp(x). - G. C. Greubel, Nov 09 2019
Sum_{n>=0} 1/a(n) = (tanh((sqrt(2)-1)*Pi/2)*Pi*(2+sqrt(2)) - tanh((sqrt(2)+1)*Pi/2)*Pi*(2-sqrt(2)))/4. - Amiram Eldar, Sep 20 2022
Comments