cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008514 4-dimensional centered cube numbers.

Original entry on oeis.org

1, 17, 97, 337, 881, 1921, 3697, 6497, 10657, 16561, 24641, 35377, 49297, 66977, 89041, 116161, 149057, 188497, 235297, 290321, 354481, 428737, 514097, 611617, 722401, 847601, 988417, 1146097, 1321937, 1517281, 1733521, 1972097, 2234497, 2522257, 2836961, 3180241
Offset: 0

Views

Author

Keywords

Comments

Summation of n^4 taken two at a time. - Al Hakanson (hawkuu(AT)gmail.com), May 27 2009
The primes in this sequence are given by A152913. - Jonathan Vos Post, Aug 17 2011

Crossrefs

Programs

  • GAP
    List([0..30],n->n^4+(n+1)^4); # Muniru A Asiru, Aug 02 2018
  • Magma
    [(n+1)^4+n^4: n in [0..30]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^4+(n+1)^4, n=0..40);
  • Mathematica
    Total/@Partition[Range[0, 30]^4, 2, 1] (* or *) LinearRecurrence[{5,-10, 10,-5,1}, {1,17,97,337,881}, 30] (* Harvey P. Dale, Jan 28 2013 *)
  • PARI
    a(n) = n^4 + (n+1)^4; \\ Altug Alkan, Aug 01 2018
    
  • Sage
    [i^4+(i+1)^4 for i in range(0,36)] # Zerinvary Lajos, Jul 03 2008
    

Formula

a(n) = n^4 + (n+1)^4.
a(n) = 2*n^4 + 4*n^3 + 6*n^2 + 4*n + 1. - Al Hakanson (hawkuu(AT)gmail.com), May 27 2009, corrected R. J. Mathar, May 29 2009
G.f.: (1+10*x+x^2)*(1+x)^2/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 09 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(0) = 1, a(1) = 17, a(2) = 97, a(3) = 337, a(4) = 881. - Harvey P. Dale, Jan 28 2013
a(n) = 4*(n+n^2) + 2*(n+n^2)^2 + 1. - Avi Friedlich, Mar 31 2015
a(n) = 2*A002061(n+1)^2 - 1. - Bruce J. Nicholson, Apr 14 2017
a(n) = A047838(2*(n^2+n+1)). - David James Sycamore, Aug 01 2018
E.g.f.: (1 + 16*x + 32*x^2 + 16*x^3 + 2*x^4)*exp(x). - G. C. Greubel, Nov 09 2019
Sum_{n>=0} 1/a(n) = (tanh((sqrt(2)-1)*Pi/2)*Pi*(2+sqrt(2)) - tanh((sqrt(2)+1)*Pi/2)*Pi*(2-sqrt(2)))/4. - Amiram Eldar, Sep 20 2022