A008517 Second-order Eulerian triangle T(n,k), 1 <= k <= n.
1, 1, 2, 1, 8, 6, 1, 22, 58, 24, 1, 52, 328, 444, 120, 1, 114, 1452, 4400, 3708, 720, 1, 240, 5610, 32120, 58140, 33984, 5040, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880
Offset: 1
Examples
Triangle begins: 1; 1, 2; 1, 8, 6; 1, 22, 58, 24; 1, 52, 328, 444, 120; ... Row 3: There are three plane increasing 0-1-2-3 trees on 3 vertices. The number of colors are shown to the right of a vertex. . 1o (2*t+1) 1o t*(t+2) 1o t*(t+2) | / \ / \ | / \ / \ 2o (2*t+1) 2o 3o 3o 2o | | 3o . The total number of trees is (2*t+1)^2 + t*(t+2) + t*(t+2) = 1 + 8*t + 6*t^2.
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270. [with offsets [0,0]: see A201637]
Links
- Vincenzo Librandi, Rows n = 1..50, flattened
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- J. F. Barbero G., J. Salas and E. J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv preprint arXiv:1307.5624 [math.CO], 2013.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer (1992), pp. 24-48.
- J. D. Buckholtz, Concerning an approximation of Copson, Proc. Amer. Math. Soc., 14 (1963), 564-568.
- Naiomi T. Cameron and Kendra Killpatrick, Statistics on Linear Chord Diagrams, arXiv:1902.09021 [math.CO], 2019.
- L. Carlitz, The coefficients in an asymptotic expansion, Proc. Amer. Math. Soc. 16 (1965) 248-252.
- L. Carlitz, Some numbers related to the Stirling numbers of the first and second kind, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., Numbers 544-576 (1976): 49-55. [Annotated scanned copy. The triangle is A008517.]
- T. Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W Function, Advances in Computational Mathematics, Vol. 5 (1996), pp. 329-359, formula (3.6), alternative link.
- Ming-Jian Ding and Jiang Zeng, Proof of an explicit formula for a series from Ramanujan's Notebooks via tree functions, arXiv:2307.00566 [math.CO], 2023.
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
- Sen-Peng Eu, Tung-Shan Fu, and Yeh-Jong Pan, A refined sign-balance of simsun permutations, Eur. J. Comb. 36 (2014) 97-109
- W. Gautschi, Exponential integral ... for large values of n, Jrn. of Rsch. of the National Bureau of Standards, Vol. 62, No. 3, March 1959, Rsch. paper 2941. - _Tom Copeland_, Jan 02 2016
- I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory, A 24 (1978), 24-33.
- J. Ginsburg, Note on Stirling's Numbers, Amer. Math. Monthly 35 (1928), no. 2, 77-80. - _David Callan_, Aug 27 2009
- Jim Haglund and Mirko Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations, European Journal of Combinatorics, Volume 33, Issue 4, May 2012, pp. 477-487.
- M. Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
- Dmitry V. Kruchinin and Vladimir V. Kruchinin, A generating function for the Euler numbers of the second kind and its application, arXiv:1802.09003 [math.CO], 2018.
- Paul Levande, Two New Interpretations of the Fishburn Numbers and their Refined Generating Functions, arXiv:1006.3013 [math.CO], 2010.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 29.
- Peter Luschny, Second-order Eulerian numbers, A companion to A340556, Feb 2021.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012
- S.-M. Ma, T. Mansour, and M. Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169 [math.CO], 2013.
- S.-M. Ma, T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permutations, arXiv preprint arXiv:1409.6525 [math.CO], 2014.
- O. J. Munch, Om potensproduktsummer [Norwegian, English summary], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. [Annotated scanned copy]
- O. J. Munch, Om potensproduktsummer [ Norwegian, English summary ], Nordisk Matematisk Tidskrift, 7 (1959), 5-19.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- M. A. Readdy, The pre-WDVV ring of physics and its topology, preprint 2002, The Ramanujan Journal, October 2005, Volume 10, Issue 2, pp 269-281.
- Grzegorz Rzadkowski and M Urlinska, A Generalization of the Eulerian Numbers, arXiv preprint arXiv:1612.06635, 2016
- C. D. Savage and G. Viswanathan, The 1/k-Eulerian polynomials, Elec. J. of Comb., Vol. 19, Issue 1, #P9 (2012). - From _N. J. A. Sloane_, Feb 06 2013
- M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Int. Seq. 13 (2010), 10.6.7, Section 5.1.
- Umesh Shankar, Log-concavity of rows of triangular arrays satisfying a certain super-recurrence, arXiv:2508.12467 [math.CO], 2025. See p. 4.
- L. M. Smiley, Completion of a rational function sequence of Carlitz, arXiv:0006106 [math.CO], 2000.
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Eric Weisstein's World of Mathematics, Second-Order Eulerian Triangle
- Wikipedia, Eulerian numbers of the second kind
Crossrefs
Programs
-
Maple
with(combinat): A008517 := proc(n, m) local k: add((-1)^(n+k)* binomial(2*n+1, k)* stirling1(2*n-m-k+1, n-m-k+1), k=0..n-m) end: seq(seq(A008517(n, m), m=1..n), n=1..8); # Johannes W. Meijer, Oct 16 2009, revised Nov 22 2012 A008517 := proc(n,k) option remember; `if`(n=1,`if`(k=0,1,0), A008517(n-1,k)* (k+1) + A008517(n-1,k-1)*(2*n-k-1)) end: seq(print(seq(A008517(n,k), k=0..n-1)), n=1..9); # Peter Luschny, Apr 20 2011
-
Mathematica
a[n_, m_] = Sum[(-1)^(n + k)*Binomial[2 n + 1, k]*StirlingS1[2n-m-k+1, n-m-k+1], {k, 0, n-m}]; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 44]] (* Jean-François Alcover, May 18 2011, after Johannes W. Meijer *)
-
PARI
{T(n, k) = my(z); if( n<1, 0, z = 1 + O(x); for( k=1, n, z = 1 + intformal( z^2 * (z+y-1))); n! * polcoeff( polcoeff(z, n),k))}; /* Michael Somos, Oct 13 2002 */
-
PARI
{T(n,k)=polcoeff((1-x)^(2*n+1)*sum(j=0,2*n+1,j^(n+j)*x^j/j!*exp(-j*x +x*O(x^k))),k)} \\ Paul D. Hanna, Oct 31 2012 for(n=1,10,for(k=1,n,print1(T(n,k),", "));print(""))
-
PARI
T(n, m) = sum(k=0, n-m, (-1)^(n+k)*binomial(2*n+1, k)*stirling(2*n-m-k+1, n-m-k+1, 1)); \\ Michel Marcus, Dec 07 2021
-
Sage
@CachedFunction def A008517(n, k): if n==1: return 1 if k==0 else 0 return A008517(n-1,k)*(k+1)+A008517(n-1,k-1)*(2*n-k-1) for n in (1..9): [A008517(n, k) for k in(0..n-1)] # Peter Luschny, Oct 31 2012
Formula
T(n,k) = 0 if n < k, T(1,1) = 1, T(n,-1) = 0, T(n,k) = k*T(n-1,k) + (2*n-k)*T(n-1,k-1).
a(n,m) = Sum_{k=0..n-m} (-1)^(n+k)*binomial(2*n+1, k)*Stirling1(2*n-m-k+1, n-m-k+1). - Johannes W. Meijer, Oct 16 2009
From Peter Bala, Sep 29 2011: (Start)
For k = 0,1,2,... put G(k,x,t) := x-(1+2^k*t)*x^2/2+(1+2^k*t+3^k*t^2)*x^3/3-(1+2^k*t+3^k*t^2+4^k*t^3)*x^4/4+.... Then the series reversion of G(k,x,t) with respect to x gives an e.g.f. for the present table when k = 1 and for the Eulerian numbers A008292 when k = 0.
Let v = -t*exp((1-t)^2*x-t) and let B(x,t) = -(1+1/t*LambertW(v))/(1+LambertW(v)). From the e.g.f. given by Copeland above we find B(x,t) = compositional inverse with respect to x of G(1,x,t) = Sum_{n>=1} R(n,t)*x^n/n! = x+(1+2*t)*x^2/2!+(1+8*t+6*t^2)*x^3/3!+.... The function B(x,t) satisfies the differential equation dB/dx = (1+B)*(1+t*B)^2 = 1 + (2*t+1)*B + t*(t+2)*B^2 + t^2*B^3.
Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the row generating polynomials R(n,t): R(n,t) counts plane increasing trees where each vertex has outdegree <= 3, the vertices of outdegree 1 come in 2*t+1 colors, the vertices of outdegree 2 come in t*(t+2) colors and the vertices of outdegree 3 come in t^2 colors. An example is given below. Cf. A008292. Applying [Dominici, Theorem 4.1] gives the following method for calculating the row polynomials R(n,t): Let f(x,t) = (1+x)*(1+t*x)^2 and let D be the operator f(x,t)*d/dx. Then R(n+1,t) = D^n(f(x,t)) evaluated at x = 0. (End)
From Tom Copeland, Oct 03 2011: (Start)
a(n,k) = Sum_{i=0..k} (-1)^(k-i) binomial(n-i,k-i) A134991(n,i), offsets 0.
P(n+1,t) = (1-t)^(2n+1) Sum_{k>=1} k^(n+k) [t*exp(-t)]^k / k! for n>0; consequently, Sum_{k>=1} (-1)^k k^(n+k) x^k/k!= [1+LW(x)]^(-(2n+1))P[n+1,-LW(x)] where LW(x) is the Lambert W-Function and P(n,t), for n > 0, are the row polynomials as given in Copeland's 2008 comment. (End)
The e.g.f. A(x,t) = -v * { Sum_{j>=1} D(j-1,u) (-z)^j / j! } where u=x*(1-t)^2-t, v=(1+u)/(1-t), z=(t+u)/[(1+u)^2] and D(j-1,u) are the polynomials of A042977. dA(x,t)/dx=(1-t)/[1+u-(1-t)A(x,t)]=(1-t)/{1+LW[-t exp(u)]}, (Copeland's e.g.f. in 2008 comment). - Tom Copeland, Oct 06 2011
A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=-t, and (a_n)=-P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 = 0. - Tom Copeland, Oct 08 2011
The compositional inverse (with respect to x) of y = y(t;x) = (x-t*(exp(x)-1)) is 1/(1-t)*y + t/(1-t)^3*y^2/2! + (t+2*t^2)/(1-t)^5*y^3/3! + (t+8*t^2+6*t^3)/(1-t)^7*y^4/4! + .... The numerator polynomials of the rational functions in t are the row polynomials of this triangle. As observed in the Comments section, the rational functions in t are the generating functions for the diagonals of the triangle of Stirling numbers of the second kind (A048993). See the Bala link for a proof. Cf. A112007 and A134991. - Peter Bala, Dec 04 2011
O.g.f. of row n: (1-x)^(2*n+1) * Sum_{k>=0} k^(n+k) * exp(-k*x) * x^k/k!. - Paul D. Hanna, Oct 31 2012
T(n, k) = n!*[x^n][t^k](egf) where egf = (1-t)/(1 + LambertW(-exp(t^2*x - 2*t*x - t + x)*t)) and after expansion W(-exp(-t)t) is substituted by (-t). - Shamil Shakirov, Feb 17 2025
Comments