A008592 Multiples of 10: a(n) = 10*n.
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 322.
- Tanya Khovanova, Recursive Sequences.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Haskell
a008592 = (10 *) -- Reinhard Zumkeller, Jun 13 2015
-
Magma
[10*n : n in [0..100]]; // Wesley Ivan Hurt, Apr 10 2016
-
Maple
A008592:=n->10*n: seq(A008592(n), n=0..100); # Wesley Ivan Hurt, Apr 10 2016
-
Mathematica
Range[0, 1000, 10] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
-
PARI
vector(50, n, n--; 10*n) \\ Michel Marcus, Feb 05 2016
-
PARI
x='x+O('x^999); concat(0, Vec(10*x/(x-1)^2)) \\ Altug Alkan, Apr 11 2016
-
PARI
apply( A008592(n)=10*n, [1..55]) \\ M. F. Hasler, Apr 23 2021
Formula
From Vincenzo Librandi, Dec 24 2010: (Start)
G.f.: 10*x/(x-1)^2.
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
a(n) = Sum_{i=2n-2..2n+2} i. - Wesley Ivan Hurt, Apr 11 2016
E.g.f.: 10*x*exp(x). - Stefano Spezia, May 31 2021
Comments