A008598 Multiples of 16.
0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 384, 400, 416, 432, 448, 464, 480, 496, 512, 528, 544, 560, 576, 592, 608, 624, 640, 656, 672, 688, 704, 720, 736, 752, 768, 784, 800, 816, 832
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 328.
- Milan Janjic, Two Enumerative Functions.
- Tanya Khovanova, Recursive Sequences.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Leo Tavares, Illustration: Square Block Star Frames
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Maple
A008598:=n->16*n; seq(A008598(n), n=0..100); # Wesley Ivan Hurt, Nov 13 2013
-
Mathematica
Range[0, 1000, 16] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *) CoefficientList[Series[16 x / (x - 1)^2, {x, 0, 60}], x] (* Vincenzo Librandi Jun 10 2013 *)
-
PARI
a(n)=16*n \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = Sum_{k=1..8n} (i^k+1)*(i^(8n-k)+1), where i=sqrt(-1). - Bruno Berselli, Mar 19 2012
G.f.: 16*x/(x-1)^2. - Vincenzo Librandi, Jun 10 2013
From Elmo R. Oliveira, Apr 07 2025: (Start)
E.g.f.: 16*x*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)
Comments