cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A219529 Coordination sequence for 3.3.4.3.4 Archimedean tiling.

Original entry on oeis.org

1, 5, 11, 16, 21, 27, 32, 37, 43, 48, 53, 59, 64, 69, 75, 80, 85, 91, 96, 101, 107, 112, 117, 123, 128, 133, 139, 144, 149, 155, 160, 165, 171, 176, 181, 187, 192, 197, 203, 208, 213, 219, 224, 229, 235, 240, 245, 251, 256, 261, 267, 272, 277, 283, 288, 293, 299
Offset: 0

Views

Author

Allan C. Wechsler, Nov 21 2012

Keywords

Comments

a(n) is the number of vertices of the 3.3.4.3.4 tiling (which has three triangles and two squares, in the given cyclic order, meeting at each vertex) whose shortest path connecting them to a given origin vertex contains n edges.
This is the dual tiling to the Cairo tiling (cf. A296368). - N. J. A. Sloane, Nov 02 2018
First few terms provided by Allan C. Wechsler; Fred Lunnon and Fred Helenius gave the next few; Fred Lunnon suggested that the recurrence was a(n+3) = a(n) + 16 for n > 1. [This conjecture is true - see the CGS-NJAS link for a proof. - N. J. A. Sloane, Dec 31 2017]
Appears also to be coordination sequence for node of type V2 in "krd" 2-D tiling (or net). This should be easy to prove by the coloring book method (see link). - N. J. A. Sloane, Mar 25 2018
Appears also to be coordination sequence for node of type V1 in "krj" 2-D tiling (or net). This also should be easy to prove by the coloring book method (see link). - N. J. A. Sloane, Mar 26 2018
First differences of A301696. - Klaus Purath, May 23 2020

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 1st row, 2nd tiling, also 2nd row, third tiling.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Haskell
    -- Very slow, could certainly be accelerated.  SST stands for Snub Square Tiling.
    setUnion [] l2 = l2
    setUnion (a:rst) l2 = if (elem a l2) then doRest else (a:doRest)
      where doRest = setUnion rst l2
    setDifference [] l2 = []
    setDifference (a:rst) l2 = if (elem a l2) then doRest else (a:doRest)
      where doRest = setDifference rst l2
    adjust k = (if (even k) then 1 else -1)
    weirdAdjacent (x,y) = (x+(adjust y),y+(adjust x))
    sstAdjacents (x,y) = [(x+1,y),(x-1,y),(x,y+1),(x,y-1),(weirdAdjacent (x,y))]
    sstNeighbors core = foldl setUnion core (map sstAdjacents core)
    sstGlob n core = if (n == 0) then core else (sstGlob (n-1) (sstNeighbors core))
    sstHalo core = setDifference (sstNeighbors core) core
    origin = [(0,0)]
    a219529 n = length (sstHalo (sstGlob (n-1) origin))
    -- Allan C. Wechsler, Nov 30 2012
    
  • Maple
    A219529:= n -> `if`(n=0, 1, (16*n +1 - `mod`(n+1,3))/3);
    seq(A219529(n), n = 0..60); # G. C. Greubel, May 27 2020
  • Mathematica
    Join[{1}, LinearRecurrence[{1,0,1,-1}, {5,11,16,21}, 60]] (* Jean-François Alcover, Dec 13 2018 *)
    Table[If[n==0, 1, (16*n +1 - Mod[n+1, 3])/3], {n, 0, 60}] (* G. C. Greubel, May 27 2020 *)
    CoefficientList[Series[(x+1)^4/((x^2+x+1)(x-1)^2),{x,0,70}],x] (* Harvey P. Dale, Jul 03 2021 *)
  • Sage
    [1]+[(16*n+1 -(n+1)%3)/3 for n in (1..60)] # G. C. Greubel, May 27 2020

Formula

Conjectured to be a(n) = floor((16n+1)/3) for n>0; a(0) = 1; this is a consequence of the suggested recurrence due to Lunnon (see comments). [This conjecture is true - see the CGS-NJAS link in A296368 for a proof. - N. J. A. Sloane, Dec 31 2017]
G.f.: (x+1)^4/((x^2+x+1)*(x-1)^2). - N. J. A. Sloane, Feb 07 2018
From G. C. Greubel, May 27 2020: (Start)
a(n) = (16*n - ChebyshevU(n-1, -1/2))/3 for n>0 with a(0)=1.
a(n) = (A008598(n) - A049347(n-1))/3 for n >0 with a(0)=1. (End)

Extensions

Corrected attributions and epistemological status in Comments; provided slow Haskell code - Allan C. Wechsler, Nov 30 2012
Extended by Joseph Myers, Dec 04 2014

A121036 Multiples of 16 containing a 16 in their decimal representation.

Original entry on oeis.org

16, 160, 416, 816, 1168, 1216, 1600, 1616, 1632, 1648, 1664, 1680, 1696, 2016, 2160, 2416, 2816, 3168, 3216, 3616, 4016, 4160, 4416, 4816, 5168, 5216, 5616, 6016, 6160, 6416, 6816, 7168, 7216, 7616, 8016, 8160, 8416, 8816, 9168, 9216, 9616, 10016
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    seqMemberQ[lst_,seq_]:=MemberQ[Partition[lst,Length[seq],1],seq]
    m16Q[n_]:=seqMemberQ[IntegerDigits[n],{1,6}]
    Select[16Range[1000],m16Q]  (* Harvey P. Dale, Feb 26 2011 *)
    Select[16Range[1000],SequenceCount[IntegerDigits[#],{1,6}]>0&] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, Apr 12 2016 *)
  • PARI
    is(n)=if(n%16,return(0));n=eval(Vec(Str(n)));for(i=2,#n,if(n[i]==6&&n[i-1]==1,return(1)));0

Formula

a(n) ~ 16n. - Charles R Greathouse IV, Jul 16 2011

Extensions

Corrected by Harvey P. Dale, Feb 26 2011

A008600 Multiples of 18.

Original entry on oeis.org

0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 198, 216, 234, 252, 270, 288, 306, 324, 342, 360, 378, 396, 414, 432, 450, 468, 486, 504, 522, 540, 558, 576, 594, 612, 630, 648, 666, 684, 702, 720, 738, 756, 774, 792, 810, 828, 846, 864, 882, 900, 918, 936
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: 18*x/(x-1)^2. - Vincenzo Librandi, Jun 10 2013
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 18*x*exp(x).
a(n) = 18*n = 2*A008591(n) = A044102(n)/2.
a(n) = 2*a(n-1) - a(n-2). (End)

A195040 Square array read by antidiagonals with T(n,k) = k*n^2/4+(k-4)*((-1)^n-1)/8, n>=0, k>=0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 3, 2, 1, 0, 1, 4, 5, 3, 1, 0, 0, 7, 8, 7, 4, 1, 0, 1, 9, 13, 12, 9, 5, 1, 0, 0, 13, 18, 19, 16, 11, 6, 1, 0, 1, 16, 25, 27, 25, 20, 13, 7, 1, 0, 0, 21, 32, 37, 36, 31, 24, 15, 8, 1, 0, 1, 25, 41, 48, 49, 45, 37, 28, 17, 9, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also, if k >= 2 and m = 2*k, then column k lists the numbers of the form k*n^2 and the centered m-gonal numbers interleaved.
For k >= 3, this is also a table of concentric polygonal numbers. Column k lists the concentric k-gonal numbers.
It appears that the first differences of column k are the numbers that are congruent to {1, k-1} mod k, if k >= 3.

Examples

			Array begins:
  0,   0,   0,   0,   0,   0,   0,   0,   0,   0, ...
  1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0,   1,   2,   3,   4,   5,   6,   7,   8,   9, ...
  1,   3,   5,   7,   9,  11,  13,  15,  17,  19, ...
  0,   4,   8,  12,  16,  20,  24,  28,  32,  36, ...
  1,   7,  13,  19,  25,  31,  37,  43,  49,  55, ...
  0,   9,  18,  27,  36,  45,  54,  63,  72,  81, ...
  1,  13,  25,  37,  49,  61,  73,  85,  97, 109, ...
  0,  16,  32,  48,  64,  80,  96, 112, 128, 144, ...
  1,  21,  41,  61,  81, 101, 121, 141, 161, 181, ...
  0,  25,  50,  75, 100, 125, 150, 175, 200, 225, ...
  ...
		

Crossrefs

Rows n: A000004 (n=0), A000012 (n=1), A001477 (n=2), A005408 (n=3), A008586 (n=4), A016921 (n=5), A008591 (n=6), A017533 (n=7), A008598 (n=8), A215145 (n=9), A008607 (n=10).
Columns k: A000035 (k=0), A004652 (k=1), A000982 (k=2), A077043 (k=3), A000290 (k=4), A032527 (k=5), A032528 (k=6), A195041 (k=7), A077221 (k=8), A195042 (k=9), A195142 (k=10), A195043 (k=11), A195143 (k=12), A195045 (k=13), A195145 (k=14), A195046 (k=15), A195146 (k=16), A195047 (k=17), A195147 (k=18), A195048 (k=19), A195148 (k=20), A195049 (k=21), A195149 (k=22), A195058 (k=23), A195158 (k=24).

Programs

  • GAP
    nmax:=13;; T:=List([0..nmax],n->List([0..nmax],k->k*n^2/4+(k-4)*((-1)^n-1)/8));; b:=List([2..nmax],n->OrderedPartitions(n,2));;
    a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][2]][b[i][j][1]]))); # Muniru A Asiru, Jul 19 2018
  • Maple
    A195040 := proc(n,k)
            k*n^2/4+((-1)^n-1)*(k-4)/8 ;
    end proc:
    for d from 0 to 12 do
            for k from 0 to d do
                    printf("%d,",A195040(d-k,k)) ;
            end do:
    end do; # R. J. Mathar, Sep 28 2011
  • Mathematica
    t[n_, k_] := k*n^2/4+(k-4)*((-1)^n-1)/8; Flatten[ Table[ t[n-k, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Dec 14 2011 *)

A016802 a(n) = (4*n)^2.

Original entry on oeis.org

0, 16, 64, 144, 256, 400, 576, 784, 1024, 1296, 1600, 1936, 2304, 2704, 3136, 3600, 4096, 4624, 5184, 5776, 6400, 7056, 7744, 8464, 9216, 10000, 10816, 11664, 12544, 13456, 14400, 15376, 16384, 17424, 18496, 19600, 20736, 21904, 23104, 24336, 25600, 26896, 28224
Offset: 0

Views

Author

Keywords

Comments

A bisection of A016742. Sequence arises from reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Also, sequence found by reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Sep 10 2011

Crossrefs

Programs

Formula

a(n) = 16*n^2 = 16*A000290(n). - Omar E. Pol, Dec 11 2008
a(n) = 8*A001105(n) = 4*A016742(n) = 2*A139098(n). - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 16*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/192.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/4)/(Pi/4).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/4)/(Pi/4) = 2*sqrt(2)/Pi (A112628). (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 16*x*(1 + x)/(1-x)^3.
E.g.f.: 16*x*(1 + x)*exp(x).
a(n) = n*A008598(n) = A195146(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A008599 Multiples of 17.

Original entry on oeis.org

0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 272, 289, 306, 323, 340, 357, 374, 391, 408, 425, 442, 459, 476, 493, 510, 527, 544, 561, 578, 595, 612, 629, 646, 663, 680, 697, 714, 731, 748, 765, 782, 799, 816, 833, 850, 867, 884
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

(floor(a(n)/10) - 5*(a(n) mod 10)) == 0 (mod 17), see A076311. - Reinhard Zumkeller, Oct 06 2002
From Vincenzo Librandi, Dec 24 2010: (Start)
a(n) = 17*n.
a(n) = 2*a(n-1) - a(n-2).
G.f.: 17*x/(x-1)^2. (End)
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 17*x*exp(x).
a(n) = (A008598(n) + A008600(n))/2. (End)

A051062 a(n) = 16*n + 8.

Original entry on oeis.org

8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536, 552, 568, 584, 600, 616, 632, 648, 664, 680, 696, 712, 728, 744, 760, 776, 792, 808, 824, 840
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(97).
n such that 32 is the largest power of 2 dividing A003629(k)^n-1 for any k. - Benoit Cloitre, Mar 23 2002
Continued fraction expansion of tanh(1/8). - Benoit Cloitre, Dec 17 2002
If Y and Z are 2-blocks of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
General form: (q*n+x)*q x=+1; q=2=A016825, q=3=A017197, q=4=A119413, ... x=-1; q=3=A017233, q=4=A098502, ... x=+2; q=4=A051062, ... - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
a(n)*n+1 = (4n+1)^2 and a(n)*(n+1)+1 = (4n+3)^2 are both perfect squares. - Carmine Suriano, Jun 01 2014
For all positive integers n, there are infinitely many positive integers k such that k*n + 1 and k*(n+1) + 1 are both perfect squares. Except for 8, all the numbers of this sequence are the smallest integers k which are solutions for getting two perfect squares. Example: a(1) = 24 and 24 * 1 + 1 = 25 = 5^2, then 24 * (1+1) + 1 = 49 = 7^2. [Reference AMM] - Bernard Schott, Sep 24 2017
Numbers k such that 3^k + 1 is divisible by 17*193. - Bruno Berselli, Aug 22 2018

References

  • Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov 11 1999.

Crossrefs

Programs

Formula

a(n) = A118413(n+1,4) for n>3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 32*n - a(n-1) for n>0, a(0)=8. - Vincenzo Librandi, Aug 06 2010
A003484(a(n)) = 8; A209675(a(n)) = 9. - Reinhard Zumkeller, Mar 11 2012
A007814(a(n)) = 3; A037227(a(n)) = 7. - Reinhard Zumkeller, Jun 30 2012
a(-1 - n) = - a(n). - Michael Somos, Jun 02 2014
Sum_{n>=0} (-1)^n/a(n) = Pi/32 (A244978). - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 8*(1+x)/(1-x)^2.
E.g.f.: 8*exp(x)*(1 + 2*x).
a(n) = 8*A005408(n) = A008598(n) + 8 = A139098(n+1) - A139098(n).
a(n) = 4*A016825(n) = 2*A017113(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)*sin(7*Pi/32).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2)*cos(7*Pi/32). (End)

A094728 Triangle read by rows: T(n,k) = n^2 - k^2, 0 <= k < n.

Original entry on oeis.org

1, 4, 3, 9, 8, 5, 16, 15, 12, 7, 25, 24, 21, 16, 9, 36, 35, 32, 27, 20, 11, 49, 48, 45, 40, 33, 24, 13, 64, 63, 60, 55, 48, 39, 28, 15, 81, 80, 77, 72, 65, 56, 45, 32, 17, 100, 99, 96, 91, 84, 75, 64, 51, 36, 19, 121, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2004

Keywords

Comments

(T(n,k) mod 4) <> 2, see A042965, A016825.
All numbers m occur A034178(m) times.
The row polynomials T(n,x) appear in the calculation of the column g.f.s of triangle A120070 (used to find the frequencies of the spectral lines of the hydrogen atom).

Examples

			n=3: T(3,x) = 9+8*x+5*x^2.
Triangle begins:
   1;
   4,  3;
   9,  8,  5;
  16, 15, 12,  7;
  25, 24, 21, 16,  9;
  36, 35, 32, 27, 20, 11;
  49, 48, 45, 40, 33, 24, 13;
  64, 63, 60, 55, 48, 39, 28, 15;
  81, 80, 77, 72, 65, 56, 45, 32, 17;
  ... etc. - _Philippe Deléham_, Mar 07 2013
		

Crossrefs

Programs

  • Magma
    [n^2-k^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Mar 12 2024
    
  • Mathematica
    Table[n^2 - k^2, {n,12}, {k,0,n-1}]//Flatten (* Michael De Vlieger, Nov 25 2015 *)
  • SageMath
    flatten([[n^2-k^2 for k in range(n)] for n in range(1,16)]) # G. C. Greubel, Mar 12 2024

Formula

Row polynomials: T(n,x) = n^2*Sum_{m=0..n} x^m - Sum_{m=0..n} m^2*x^m = Sum_{k=0..n-1} T(n,k)*x^k, n >= 1.
T(n, k) = A004736(n,k)*A094727(n,k).
T(n, 0) = A000290(n).
T(n, 1) = A005563(n-1) for n>1.
T(n, 2) = A028347(n) for n>2.
T(n, 3) = A028560(n-3) for n>3.
T(n, 4) = A028566(n-4) for n>4.
T(n, n-1) = A005408(n).
T(n, n-2) = A008586(n-1) for n>1.
T(n, n-3) = A016945(n-2) for n>2.
T(n, n-4) = A008590(n-2) for n>3.
T(n, n-5) = A017329(n-3) for n>4.
T(n, n-6) = A008594(n-3) for n>5.
T(n, n-8) = A008598(n-2) for n>7.
T(A005408(k), k) = A000567(k).
Sum_{k=0..n} T(n, k) = A002412(n) (row sums).
From G. C. Greubel, Mar 12 2024: (Start)
Sum_{k=0..n-1} (-1)^k * T(n, k) = A000384(floor((n+1)/2)).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A128624(n).
Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = (1/2)*n*(n+1 - (-1)^n*cos(n*Pi/2)). (End)
G.f.: x*(1 - 3*x^2*y + x*(1 + y))/((1 - x)^3*(1 - x*y)^2). - Stefano Spezia, Aug 04 2025

A062111 Upper-right triangle resulting from binomial transform calculation for nonnegative integers.

Original entry on oeis.org

0, 1, 1, 4, 3, 2, 12, 8, 5, 3, 32, 20, 12, 7, 4, 80, 48, 28, 16, 9, 5, 192, 112, 64, 36, 20, 11, 6, 448, 256, 144, 80, 44, 24, 13, 7, 1024, 576, 320, 176, 96, 52, 28, 15, 8, 2304, 1280, 704, 384, 208, 112, 60, 32, 17, 9, 5120, 2816, 1536, 832, 448, 240, 128, 68, 36, 19, 10
Offset: 0

Views

Author

Henry Bottomley, May 30 2001

Keywords

Comments

From Philippe Deléham, Apr 15 2007: (Start)
This triangle can be found in the Laisant reference in the following form:
.......................5...11..
...................4...9...20..
...............3...7..16...36..
...........2...5..12..28.......
.......1...3...8..20..48.......
...0...1...4..12..32..80....... (End)
Triangle A152920 reversed. - Philippe Deléham, Apr 21 2009

Examples

			As a lower triangle (T(n, k)):
    0;
    1,   1;
    4,   3,   2;
   12,   8,   5,  3;
   32,  20,  12,  7,  4;
   80,  48,  28, 16,  9,  5;
  192, 112,  64, 36, 20, 11,  6;
  448, 256, 144, 80, 44, 24, 13, 7;
		

Crossrefs

Rows include (essentially) A001787, A001792, A034007, A045623, A045891.
Diagonals include (essentially) A001477, A005408, A008586, A008598, A017113.
Column sums are A058877.

Programs

  • Magma
    [2^(n-k-1)*(n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 28 2022
    
  • Mathematica
    Table[2^(n-k-1)*(n+k), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 28 2022 *)
  • SageMath
    def A062111(n,k): return 2^(n-k-1)*(n+k)
    flatten([[A062111(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 28 2022

Formula

A(n, k) = A(n, k-1) + A(n+1, k) if k > n with A(n, n) = n.
A(n, k) = (k+n)*2^(k-n-1) if k >= n.
T(2*n, n) = 3*n*2^(n-1) = 3*A001787(n). - Philippe Deléham, Apr 21 2009
From G. C. Greubel, Sep 28 2022: (Start)
T(n, k) = 2^(n-k-1)*(n+k) for 0 <= k <= n, n >= 0.
T(m*n, n) = 2^((m-1)*n-1)*(m+1)*A001477(n), m >= 1.
T(2*n-1, n-1) = A130129(n-1).
T(2*n+1, n-1) = 12*A001787(n).
Sum_{k=0..n} T(n, k) = A058877(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = 3*A073371(n-2), n >= 2.
T(n, k) = A152920(n, n-k). (End)

A094053 Triangle read by rows: T(n,k) = k*(n-k), 1 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 3, 4, 3, 0, 4, 6, 6, 4, 0, 5, 8, 9, 8, 5, 0, 6, 10, 12, 12, 10, 6, 0, 7, 12, 15, 16, 15, 12, 7, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, 12
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2004

Keywords

Comments

T(n,k) = A003991(n-1,k) for 1 <= k < n;
T(n,k) = T(n,n-1-k) for k < n;
T(n,1) = n-1; T(n,n) = 0; T(n,2) = A005843(n-2) for n > 1;
T(n,3) = A008585(n-3) for n>2; T(n,4) = A008586(n-4) for n > 3;
T(n,5) = A008587(n-5) for n>4; T(n,6) = A008588(n-6) for n > 5;
T(n,7) = A008589(n-7) for n>6; T(n,8) = A008590(n-8) for n > 7;
T(n,9) = A008591(n-9) for n>8; T(n,10) = A008592(n-10) for n > 9;
T(n,11) = A008593(n-11) for n>10; T(n,12) = A008594(n-12) for n > 11;
T(n,13) = A008595(n-13) for n>12; T(n,14) = A008596(n-14) for n > 13;
T(n,15) = A008597(n-15) for n>14; T(n,16) = A008598(n-16) for n > 15;
T(n,17) = A008599(n-17) for n>16; T(n,18) = A008600(n-18) for n > 17;
T(n,19) = A008601(n-19) for n>18; T(n,20) = A008602(n-20) for n > 19;
Row sums give A000292; triangle sums give A000332;
All numbers m > 0 occur A000005(m) times;
A002378(n) = T(A005408(n),n+1) = n*(n+1).
k-th columns are arithmetic progressions with step k, starting with 0. If a zero is prefixed to the sequence, then we get a new table where the columns are again arithmetic progressions with step k, but starting with k, k=0,1,2,...: 1st column = (0,0,0,...), 2nd column = (1,2,3,...), 3rd column = (2,4,6,8,...), etc. - M. F. Hasler, Feb 02 2013
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in the Jordan-Schwinger form (cf. Harter, Klee, Schwinger). The triangle terms T(n,k) = T(2j,j+m) satisfy: (1/2)T(2j,j+m)^(1/2) = = = i = -i . Matrices for J_1 and J_2 are sparse. These equalities determine the only nonzero entries. - Bradley Klee, Jan 29 2016
T(n+1,k+1) is the number of degrees of freedom of a k-dimensional affine subspace within an n-dimensional vector space. This is most readily interpreted geometrically: e.g. in 3 dimensions a line (1-dimensional subspace) has T(4,2) = 4 degrees of freedom and a plane has T(4,3) = 3. T(n+1,1) = n indicates that points in n dimensions have n degrees of freedom. T(n,n) = 0 for any n as all n-dimensional spaces in an n-dimensional space are equivalent. - Daniel Leary, Apr 29 2020

Examples

			From _M. F. Hasler_, Feb 02 2013: (Start)
Triangle begins:
  0;
  1, 0;
  2, 2, 0;
  3, 4, 3, 0;
  4, 6, 6, 4, 0;
  5, 8, 9, 8, 5, 0;
  (...)
If an additional 0 was added at the beginning, this would become:
  0;
  0, 1;
  0, 2, 2;
  0, 3, 4; 3;
  0, 4, 6, 6, 4;
  0, 5, 8, 9, 8, 5;
  ... (End)
		

Crossrefs

J_3: A114327; J_1^2, J_2^2: A141387, A268759.
Cf. A000292 (row sums), A000332 (triangle sums).
T(n,k) for values of k:
A005843 (k=2), A008585 (k=3), A008586 (k=4), A008587 (k=5), A008588 (k=6), A008589 (k=7), A008590 (k=8), A008591 (k=9), A008592 (k=10), A008593 (k=11), A008594 (k=12), A008595 (k=13), A008596 (k=14), A008597 (k=15), A008598 (k=16), A008599 (k=17), A008600 (k=18), A008601 (k=19), A008602 (k=20).

Programs

  • Magma
    /* As triangle */ [[k*(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 30 2016
    
  • Mathematica
    Flatten[Table[(j - m) (j + m + 1), {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
  • PARI
    {for(n=1, 13, for(k=1, n, print1(k*(n - k)," ");); print(););} \\ Indranil Ghosh, Mar 12 2017
Showing 1-10 of 28 results. Next