cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008643 Molien series for group of 4 X 4 upper triangular matrices over GF(2).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 35, 35, 44, 44, 56, 56, 68, 68, 84, 84, 100, 100, 120, 120, 140, 140, 165, 165, 190, 190, 220, 220, 250, 250, 286, 286, 322, 322, 364, 364, 406, 406, 455, 455, 504, 504, 560, 560, 616, 616, 680, 680, 744
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 4 and 8. - Ilya Gutkovskiy, May 24 2017

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Crossrefs

Cf. A008804, A088932 (partial sums).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (&*[1/(1-x^(2^j)): j in [0..3]]) )); // G. C. Greubel, Feb 01 2020
    
  • Maple
    a:= proc(n) local m, r; m := iquo(n, 8, 'r'); r:= iquo(r,2)+1; ([11, 17, 26, 35][r]+ (9+ 3*r+ 4*m) *m) *m/3+ [1, 2, 4, 6][r] end: seq(a(n), n=0..100);  # Alois P. Heinz, Oct 06 2008
  • Mathematica
    CoefficientList[1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)) + O[x]^65, x] (* Jean-François Alcover, May 29 2015 *)
    LinearRecurrence[{1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1}, {1,1,2,2,4,4,6,6,10,10,14,14,20,20,26}, 65] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    my(x='x+O('x^65)); Vec(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8))) \\ G. C. Greubel, Feb 01 2020
    
  • PARI
    my(b(m) = (m^3 + 12*m^2 + (44 - 3*(m%2))*m + 48)\48); vector(59,n,b((n-1)\2)) \\ Hoang Xuan Thanh, Aug 14 2025
    
  • Sage
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)) ).list()
    A077952_list(65) # G. C. Greubel, Feb 01 2020

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)).
a(n) = floor(((n+14)*(3*(n+1)*(-1)^n + 2*n^2 + 17*n + 57) + 24*(floor(n/2) + 1)*(-1)^floor(n/2))/768). - Tani Akinari, Jun 16 2013
a(n) ~ 1/384*n^3. - Ralf Stephan, Apr 29 2014