A008643 Molien series for group of 4 X 4 upper triangular matrices over GF(2).
1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 35, 35, 44, 44, 56, 56, 68, 68, 84, 84, 100, 100, 120, 120, 140, 140, 165, 165, 190, 190, 220, 220, 250, 250, 286, 286, 322, 322, 364, 364, 406, 406, 455, 455, 504, 504, 560, 560, 616, 616, 680, 680, 744
Offset: 0
References
- D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 233
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (&*[1/(1-x^(2^j)): j in [0..3]]) )); // G. C. Greubel, Feb 01 2020 -
Maple
a:= proc(n) local m, r; m := iquo(n, 8, 'r'); r:= iquo(r,2)+1; ([11, 17, 26, 35][r]+ (9+ 3*r+ 4*m) *m) *m/3+ [1, 2, 4, 6][r] end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 06 2008
-
Mathematica
CoefficientList[1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)) + O[x]^65, x] (* Jean-François Alcover, May 29 2015 *) LinearRecurrence[{1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1}, {1,1,2,2,4,4,6,6,10,10,14,14,20,20,26}, 65] (* Ray Chandler, Jul 15 2015 *)
-
PARI
my(x='x+O('x^65)); Vec(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8))) \\ G. C. Greubel, Feb 01 2020
-
PARI
my(b(m) = (m^3 + 12*m^2 + (44 - 3*(m%2))*m + 48)\48); vector(59,n,b((n-1)\2)) \\ Hoang Xuan Thanh, Aug 14 2025
-
Sage
def A077952_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)) ).list() A077952_list(65) # G. C. Greubel, Feb 01 2020
Formula
G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)).
a(n) = floor(((n+14)*(3*(n+1)*(-1)^n + 2*n^2 + 17*n + 57) + 24*(floor(n/2) + 1)*(-1)^floor(n/2))/768). - Tani Akinari, Jun 16 2013
a(n) ~ 1/384*n^3. - Ralf Stephan, Apr 29 2014
Comments