cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008680 Expansion of 1/((1-x^3)*(1-x^4)*(1-x^5)).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 22, 23, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 3, 4, and 5. - Joerg Arndt, Aug 17 2013

Examples

			G.f. = 1 + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + ...
		

Programs

  • GAP
    a:=[1,0,0,1,1,1,1,1,2,2,2,2];; for n in [13..80] do a[n]:=a[n-3] +a[n-4]+a[n-5]-a[n-7]-a[n-8]-a[n-9]+a[n-12]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^3)*(1-x^4)*(1-x^5)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    a:= proc(n) local m, r; m:= iquo(n, 60, 'r'); r:= r+1; (5+r+30*m)*m+ [1, 0$2, 1$5, 2$4, 3$3, 4$3, 5$2, 6$3, 7, 8$3, 9, 10$2, 11$2, 12, 13$2, 14, 15$2, 16, 17, 18$2, 19, 20, 21, 22$2, 23, 25, i$i=25..35][r] end: seq(a(n), n=0..100);  # Alois P. Heinz, Oct 06 2008
  • Mathematica
    CoefficientList[Series[1/((1-x^3)(1-x^4)(1-x^5)),{x,0,80}],x] (* Harvey P. Dale, Apr 29 2011 *)
  • PARI
    {a(n) = if( n<0, n=-12-n); polcoeff( 1 / ((1 - x^3) * (1 - x^4) * (1 - x^5)) + x * O(x^n), n)}; /* Michael Somos, Aug 13 2007 */
    
  • Sage
    def A008680_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x^3)*(1-x^4)*(1-x^5))).list()
    A008680_list(80) # G. C. Greubel, Sep 09 2019
    

Formula

Euler transform of length 5 sequence [ 0, 0, 1, 1, 1]. - Michael Somos, Aug 13 2007
From Michael Somos, Aug 13 2007: (Start)
G.f.: 1 / ((1 - x^3) * (1 - x^4) * (1 - x^5)).
a(n) = a(-12-n) for all n in Z. (End)
a(n) = floor((1+(-1)^n)*(-1)^floor(n/2)/8 +(n^2+12*n+90)/120). - Tani Akinari, Aug 17 2013

Extensions

Typo in name fixed by Vincenzo Librandi, Jun 23 2013