A008789 a(n) = n^(n+3).
0, 1, 32, 729, 16384, 390625, 10077696, 282475249, 8589934592, 282429536481, 10000000000000, 379749833583241, 15407021574586368, 665416609183179841, 30491346729331195904, 1477891880035400390625, 75557863725914323419136
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
Crossrefs
Programs
-
GAP
List([0..20], n-> n^(n+3)); # G. C. Greubel, Sep 11 2019
-
Magma
[n^(n+3): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Maple
printlevel := -1; a := [0]; T := x->-LambertW(-x); f := series((T(x)*(1+8*T(x)+6*(T(x))^2)/(1-T(x))^7),x,24); for m from 1 to 23 do a := [op(a),op(2*m-1,f)*m! ] od; print(a); # Len Smiley, Nov 19 2001
-
Mathematica
Table[n^(n+3),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
PARI
vector(20, n, (n-1)^(n+2)) \\ G. C. Greubel, Sep 11 2019
-
Sage
[n^(n+3) for n in (0..20)] # G. C. Greubel, Sep 11 2019
Formula
E.g.f.(x): T*(1 +8*T +6*T^2)*(1-T)^(-7); where T=T(x) is Euler's tree function (see A000169). - Len Smiley, Nov 19 2001
E.g.f.: d^3/dx^3 {x^3/(T(x)^3*(1-T(x)))}, where T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012
a(n) = n*A008788(n). - R. J. Mathar, Oct 31 2015