A008826 Triangle of coefficients from fractional iteration of e^x - 1.
1, 1, 3, 1, 13, 18, 1, 50, 205, 180, 1, 201, 1865, 4245, 2700, 1, 875, 16674, 74165, 114345, 56700, 1, 4138, 155477, 1208830, 3394790, 3919860, 1587600, 1, 21145, 1542699, 19800165, 90265560, 182184030, 167310360, 57153600, 1, 115973, 16385857, 335976195, 2338275240, 7342024200, 11471572350, 8719666200, 2571912000
Offset: 2
Examples
Triangle starts: 1; 1, 3; 1, 13, 18; 1, 50, 205, 180; 1, 201, 1865, 4245, 2700; 1, 875, 16674, 74165, 114345, 56700; 1, 4138, 155477, 1208830, 3394790, 3919860, 1587600; ... The f-vector of (the fine subdivision of) the Bergman complex of the complete graph K_3 is (1, 3). The f-vector of the Bergman complex of K_4 is (1, 13, 18). - _Harry Richman_, Mar 30 2023
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.
Links
- Alois P. Heinz, Rows n = 2..150, flattened (first 19 rows from Vincenzo Librandi)
- Gottfried Helms, How this expression leads to the given sequence, MathOverflow.
- Federico Ardila and Caroline J. Klivans, The Bergman complex of a matroid and phylogenetic trees, J. Combin. Theory Ser. B, 96 (2006), 38-49.
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; expand(`if`(n=1, 1, add(Stirling2(n, j)*b(j)*x, j=0..n-1))) end: T:= (n, k)-> coeff(b(n), x, k): seq(seq(T(n, k), k=1..n-1), n=2..10); # Alois P. Heinz, Mar 31 2023
-
Mathematica
a[n_, x_] := Sum[ StirlingS2[n, k]*a[k, x]*x, {k, 0, n-1}]; a[1, ] = 1; Table[ CoefficientList[ a[n, x], x] // Rest, {n, 2, 10}] // Flatten (* _Jean-François Alcover, Dec 11 2012, after Vladeta Jovovic *) sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; tots[m_]:=Prepend[Join@@Table[tots[p],{p,Select[sps[m],1
Gus Wiseman, Jan 02 2020 *)
Formula
G.f. A(n;x) for n-th row satisfies A(n;x) = Sum_{k=0..n-1} Stirling2(n, k)*A(k;x)*x, A(1;x) = 1. - Vladeta Jovovic, Jan 02 2004
Sum_{k=1..n-1} (-1)^k*T(n,k) = (-1)^(n-1)*(n-1)! = A133942(n-1). - Geoffrey Critzer, Sep 06 2020
Extensions
More terms from Vladeta Jovovic, Jan 02 2004
Comments