cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008826 Triangle of coefficients from fractional iteration of e^x - 1.

Original entry on oeis.org

1, 1, 3, 1, 13, 18, 1, 50, 205, 180, 1, 201, 1865, 4245, 2700, 1, 875, 16674, 74165, 114345, 56700, 1, 4138, 155477, 1208830, 3394790, 3919860, 1587600, 1, 21145, 1542699, 19800165, 90265560, 182184030, 167310360, 57153600, 1, 115973, 16385857, 335976195, 2338275240, 7342024200, 11471572350, 8719666200, 2571912000
Offset: 2

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

The triangle reflects the Jordan-decomposition of the matrix of Stirling numbers of the second kind. A display of the matrix formula can be found at the Helms link which also explains the generation rule for the A()-numbers in a different way. - Gottfried Helms Apr 19 2014
From Gus Wiseman, Jan 02 2020: (Start)
Also the number of balanced reduced multisystems with atoms {1..n} and depth k. A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. For example, row n = 4 counts the following multisystems:
{1,2,3,4} {{1},{2,3,4}} {{{1}},{{2},{3,4}}}
{{1,2},{3,4}} {{{1},{2}},{{3,4}}}
{{1,2,3},{4}} {{{1},{2,3}},{{4}}}
{{1,2,4},{3}} {{{1,2}},{{3},{4}}}
{{1,3},{2,4}} {{{1,2},{3}},{{4}}}
{{1,3,4},{2}} {{{1},{2,4}},{{3}}}
{{1,4},{2,3}} {{{1,2},{4}},{{3}}}
{{1},{2},{3,4}} {{{1}},{{3},{2,4}}}
{{1},{2,3},{4}} {{{1},{3}},{{2,4}}}
{{1,2},{3},{4}} {{{1,3}},{{2},{4}}}
{{1},{2,4},{3}} {{{1,3},{2}},{{4}}}
{{1,3},{2},{4}} {{{1},{3,4}},{{2}}}
{{1,4},{2},{3}} {{{1,3},{4}},{{2}}}
{{{1}},{{4},{2,3}}}
{{{1},{4}},{{2,3}}}
{{{1,4}},{{2},{3}}}
{{{1,4},{2}},{{3}}}
{{{1,4},{3}},{{2}}}
(End)
From Harry Richman, Mar 30 2023: (Start)
Equivalently, T(n,k) is the number of length-k chains from minimum to maximum in the lattice of set partitions of {1..n} ordered by refinement. For example, row n = 4 counts the following chains, leaving out the minimum {1|2|3|4} and maximum {1234}:
(empty) {12|3|4} {12|3|4} < {123|4}
{13|2|4} {12|3|4} < {124|3}
{14|2|3} {12|3|4} < {12|34}
{1|23|4} {13|2|4} < {123|4}
{1|24|3} {13|2|4} < {134|2}
{1|2|34} {13|2|4} < {13|24}
{123|4} {14|2|3} < {124|3}
{124|3} {14|2|3} < {134|2}
{134|2} {14|2|3} < {14|23}
{1|234} {1|23|4} < {123|4}
{12|34} {1|23|4} < {1|234}
{13|24} {1|23|4} < {14|23}
{14|23} {1|24|3} < {124|3}
{1|24|3} < {1|234}
{1|24|3} < {13|24}
{1|2|34} < {134|2}
{1|2|34} < {1|234}
{1|2|34} < {12|34}
(End)
Also the number of cells of dimension k in the fine subdivision of the Bergman complex of the complete graph on n vertices. - Harry Richman, Mar 30 2023

Examples

			Triangle starts:
  1;
  1,    3;
  1,   13,     18;
  1,   50,    205,     180;
  1,  201,   1865,    4245,    2700;
  1,  875,  16674,   74165,  114345,   56700;
  1, 4138, 155477, 1208830, 3394790, 3919860, 1587600;
  ...
The f-vector of (the fine subdivision of) the Bergman complex of the complete graph K_3 is (1, 3). The f-vector of the Bergman complex of K_4 is (1, 13, 18). - _Harry Richman_, Mar 30 2023
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.

Crossrefs

Row sums are A005121.
Alternating row sums are signed factorials A133942(n-1).
Column k = 2 is A008827.
Diagonal k = n - 1 is A006472.
Diagonal k = n - 2 is A059355.
Row n equals row 2^n of A330727.

Programs

Formula

G.f. A(n;x) for n-th row satisfies A(n;x) = Sum_{k=0..n-1} Stirling2(n, k)*A(k;x)*x, A(1;x) = 1. - Vladeta Jovovic, Jan 02 2004
Sum_{k=1..n-1} (-1)^k*T(n,k) = (-1)^(n-1)*(n-1)! = A133942(n-1). - Geoffrey Critzer, Sep 06 2020

Extensions

More terms from Vladeta Jovovic, Jan 02 2004