A008837 a(n) = p*(p-1)/2 for p = prime(n).
1, 3, 10, 21, 55, 78, 136, 171, 253, 406, 465, 666, 820, 903, 1081, 1378, 1711, 1830, 2211, 2485, 2628, 3081, 3403, 3916, 4656, 5050, 5253, 5671, 5886, 6328, 8001, 8515, 9316, 9591, 11026, 11325, 12246, 13203, 13861, 14878, 15931, 16290, 18145, 18528, 19306
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[ (k-1)*k/2 where k is NthPrime(n): n in [1..44] ]; // Klaus Brockhaus, Nov 18 2008
-
Maple
a:= n-> (p-> p*(p-1)/2)(ithprime(n)): seq(a(n), n=1..65); # Alois P. Heinz, Apr 20 2022
-
Mathematica
Table[Prime[n] * (Prime[n] - 1)/2, {n, 22}] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *) Table[Binomial[Prime[n], 2], {n, 40}] (* Alonso del Arte, Aug 22 2014, based on the formula from Enrique Pérez Herrero *) (#(#-1))/2&/@Prime[Range[50]] (* Harvey P. Dale, Oct 02 2019 *)
-
PARI
{ n=0; forprime (p=2, prime(1000), write("b008837.txt", n++, " ", p*(p - 1)/2) ) } \\ Harry J. Smith, Jul 25 2009
-
Scheme
(define (A008837 n) (/ (A036689 n) 2)) ;; Antti Karttunen, May 01 2015
Formula
a(n) = (phi(prime(n))^2 + phi(prime(n)))/2, where phi(n) is Euler's totient function, A000010. - Alonso del Arte, Aug 22 2014
a(n) = A036689(n)/2. - Antti Karttunen, May 01 2015
Product_{n>=2} (1 - 1/a(n)) = A271780. - Amiram Eldar, Nov 22 2022
Extensions
Offset changed from 2 to 1 by Harry J. Smith, Jul 25 2009
Comments