cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008860 a(n) = Sum_{k=0..7} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 255, 502, 968, 1816, 3302, 5812, 9908, 16384, 26333, 41226, 63004, 94184, 137980, 198440, 280600, 390656, 536155, 726206, 971712, 1285624, 1683218, 2182396, 2804012, 3572224, 4514873, 5663890, 7055732
Offset: 0

Views

Author

Keywords

Comments

This is a general comment about sequences: A000012, A000027, A000124, A000125, A000127, A006261, A008859, this sequence, A008861, A008862, A008863. Let j in {1, 2, ..., 11} index these 11 sequences respective to their order above. Then a(n) in each sequence is the number of compositions of (n+1) into j or fewer parts. From this we see that the ordinary generating function for each sequence is Sum_{i=0..j-1} x^i/(1-x)^(i+1). - Geoffrey Critzer, Jan 19 2009
a(n) is the maximal number of regions in 7-space formed by n-1 6-dimensional hypercubes. Also the number of binary words of length n matching the regular expression 1*0*1*0*1*0*1*0*. A000124, A000125, A000127, A006261, A008859 count binary words of the form 0*1*0*, 1*0*1*0*, 0*1*0*1*0*, 1*0*1*0*1*0*, and 0*1*0*1*0*1*0* respectively. - Manfred Scheucher, Jun 22 2023

Examples

			a(8)=255 because there are 255 compositions of 9 into eight or fewer parts. - _Geoffrey Critzer_, Jan 23 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.

Crossrefs

Programs

  • GAP
    List([0..40], n-> Sum([0..7], k-> Binomial(n,k)) ); # G. C. Greubel, Sep 13 2019
  • Haskell
    a008860 = sum . take 8 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [&+[Binomial(n, k): k in [0..7]]: n in [0..55]]; // Vincenzo Librandi, May 20 2019
    
  • Maple
    seq(sum(binomial(n,j), j=0..7), n=0..40); # G. C. Greubel, Sep 13 2019
  • Mathematica
    CoefficientList[Series[(1-6x+16x^2-24x^3+22x^4-12x^5+4x^6)/(1-x)^8, {x, 0, 34}], x] (* Georg Fischer, May 19 2019 *)
    Sum[Binomial[Range[41]-1, j-1], {j,8}] (* G. C. Greubel, Sep 13 2019 *)
  • PARI
    a(n)=(n+1)*(n^6-15*n^5+127*n^4-477*n^3+1576*n^2-1212*n+5040)/5040 \\ Charles R Greathouse IV, Dec 07 2011
    
  • Sage
    [binomial(n,1)+binomial(n,3)+binomial(n,5)+binomial(n,7) for n in range(1, 36)] # Zerinvary Lajos, May 17 2009
    
  • Sage
    [sum(binomial(n,k) for k in (0..7)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = Sum_{k=1..4} binomial(n+1, 2k-1) = (n^6 - 14*n^5 + 112*n^4 - 350*n^3 + 1099*n^2 + 364*n + 3828)*n/5040 + 1. [Len Smiley's formula for A006261, copied by Frank Ellermann]
G.f.: (1 - 6*x + 16*x^2 - 24*x^3 + 22*x^4 - 12*x^5 + 4*x^6)/(1-x)^8. - Geoffrey Critzer, Jan 19 2009 [Corrected by Georg Fischer, May 19 2019]