cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A009227 Expansion of e.g.f.: exp(sinh(x))/exp(x).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 10, 1, 56, 281, 246, 4621, 16412, 53197, 564642, 1937937, 13309648, 100397649, 454215214, 4082253589, 26498068420, 174791970677, 1575851086778, 10628056916313, 91523101970104, 788580099169337, 6237722665351750, 60190551618214941
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n-set in which block sizes are odd and greater than 1. - Vladeta Jovovic, Aug 23 2007

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, 2*j)*a(n-2*j-1), j=1..(n-1)/2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 09 2022
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Sinh[x]]/Exp[x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 18 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(sinh(x))/exp(x))) \\ Michel Marcus, Apr 09 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..floor((n-1)/2)} binomial(n-1,2*k) * a(n-2*k-1). - Ilya Gutkovskiy, Apr 09 2022

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997
Definition clarified and prior Mathematica program replaced by Harvey P. Dale, Jan 18 2015

A009282 Expansion of e.g.f.: exp(x + sin(x)).

Original entry on oeis.org

1, 2, 4, 7, 8, -7, -74, -209, -40, 2441, 10954, 6667, -185524, -1041739, -510530, 26716831, 158378768, -47260303, -6226501934, -34323431789, 71521515284, 2087815263725, 9437342779558, -55046954388953, -923175950185960, -2736047549718871, 43387645616657338
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x+Sin[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 23 2014 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x + sin(x)))) /* Joerg Arndt, Sep 01 2012 */

Formula

E.g.f.: exp(x + sin(x)).
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n-1,2*k) * a(n-2*k-1). - Ilya Gutkovskiy, Apr 10 2022

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Name corrected by Arkadiusz Wesolowski, Sep 01 2012
Showing 1-2 of 2 results.