cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A009967 Powers of 23.

Original entry on oeis.org

1, 23, 529, 12167, 279841, 6436343, 148035889, 3404825447, 78310985281, 1801152661463, 41426511213649, 952809757913927, 21914624432020321, 504036361936467383, 11592836324538749809, 266635235464391245607, 6132610415680998648961, 141050039560662968926103, 3244150909895248285300369, 74615470927590710561908487, 1716155831334586342923895201
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 23), L(1, 23), P(1, 23), T(1, 23). Essentially same as Pisot sequences E(23, 529), L(23, 529), P(23, 529), T(23, 529). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 23-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers k such that sigma(23*k) = 23*k + sigma(k). - Jahangeer Kholdi, Nov 23 2013

Crossrefs

Programs

Formula

G.f.: 1/(1-23*x). - Philippe Deléham, Nov 23 2008
a(n) = 23^n; a(n) = 23*a(n-1) n>0 a(0)=1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: exp(23*x).
a(n) = A009990(n)/A000079(n). (End)

A218749 a(n) = (46^n - 1)/45.

Original entry on oeis.org

0, 1, 47, 2163, 99499, 4576955, 210539931, 9684836827, 445502494043, 20493114725979, 942683277395035, 43363430760171611, 1994717814967894107, 91757019488523128923, 4220822896472063930459, 194157853237714940801115, 8931261248934887276851291, 410838017451004814735159387
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 46 (A009990).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 08 2012: (Start)
G.f.: x/((1-x)*(1-46*x)).
a(n) = 47*a(n-1) - 46*a(n-2) with a(0)=0, a(1)=1.
a(n) = 46*a(n-1) + 1 with a(0)=0.
a(n) = floor(46^n/45). (End)
E.g.f.: exp(x)*(exp(45*x) - 1)/45. - Elmo R. Oliveira, Aug 29 2024

A165867 Totally multiplicative sequence with a(p) = 46.

Original entry on oeis.org

1, 46, 46, 2116, 46, 2116, 46, 97336, 2116, 2116, 46, 97336, 46, 2116, 2116, 4477456, 46, 97336, 46, 97336, 2116, 2116, 46, 4477456, 2116, 2116, 97336, 97336, 46, 97336, 46, 205962976, 2116, 2116, 2116, 4477456, 46, 2116, 2116, 4477456, 46, 97336, 46
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Programs

  • Mathematica
    46^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 16 2016 *)
  • PARI
    a(n) = 46^bigomega(n); \\ Altug Alkan, Apr 16 2016

Formula

a(n) = A009990(A001222(n)) = 46^bigomega(n) = 46^A001222(n).
Showing 1-3 of 3 results.