cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010122 Continued fraction for sqrt(13).

Original entry on oeis.org

3, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6
Offset: 0

Views

Author

Keywords

Comments

Eventual period is (1, 1, 1, 1, 6). - Zak Seidov, Mar 05 2011

Examples

			3.605551275463989293119221267... = 3 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 02 2009
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 96 at p. 264.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 428.

Crossrefs

Cf. A010470 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[13],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 13000); x=contfrac(sqrt(13)); for (n=0, 20000, write("b010122.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 02 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(5^e) = 6, and a(p^e) = 1 for p != 5.
Dirichlet g.f.: zeta(s) * (1 + 1/5^(s-1)). (End)
G.f.: (3 + x + x^2 + x^3 + x^4 + 3*x^5)/(1 - x^5). - Stefano Spezia, Aug 17 2024