A010122 Continued fraction for sqrt(13).
3, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6
Offset: 0
Examples
3.605551275463989293119221267... = 3 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 02 2009
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 96 at p. 264.
- Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 428.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
Crossrefs
Cf. A010470 (decimal expansion).
Programs
-
Mathematica
ContinuedFraction[Sqrt[13],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 13000); x=contfrac(sqrt(13)); for (n=0, 20000, write("b010122.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 02 2009
Formula
From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(5^e) = 6, and a(p^e) = 1 for p != 5.
Dirichlet g.f.: zeta(s) * (1 + 1/5^(s-1)). (End)
G.f.: (3 + x + x^2 + x^3 + x^4 + 3*x^5)/(1 - x^5). - Stefano Spezia, Aug 17 2024
Comments