cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A010470 Decimal expansion of square root of 13.

Original entry on oeis.org

3, 6, 0, 5, 5, 5, 1, 2, 7, 5, 4, 6, 3, 9, 8, 9, 2, 9, 3, 1, 1, 9, 2, 2, 1, 2, 6, 7, 4, 7, 0, 4, 9, 5, 9, 4, 6, 2, 5, 1, 2, 9, 6, 5, 7, 3, 8, 4, 5, 2, 4, 6, 2, 1, 2, 7, 1, 0, 4, 5, 3, 0, 5, 6, 2, 2, 7, 1, 6, 6, 9, 4, 8, 2, 9, 3, 0, 1, 0, 4, 4, 5, 2, 0, 4, 6, 1, 9, 0, 8, 2, 0, 1, 8, 4, 9, 0, 7, 1
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 3 followed by {1, 1, 1, 1, 6} repeated. - Harry J. Smith, Jun 02 2009
The convergents to sqrt(13) are given in A041018/A041019. - Wolfdieter Lang, Nov 23 2017
The fundamental algebraic (integer) number in the field Q(sqrt(13)) is (1 + sqrt(13))/2 = A209927. - Wolfdieter Lang, Nov 21 2023

Examples

			3.605551275463989293119221267470495946251296573845246212710453056227166...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.31.4, p. 201.

Crossrefs

Cf. A010122 (continued fraction), A041018/A041019 (convergents), A248242 (Egyptian fraction), A171983 (Beatty sequence).
Cf. A020770 (reciprocal), A209927, A295330, A344069.

Programs

  • Mathematica
    RealDigits[N[Sqrt[13],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(13); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010470.txt", n, " ", d));  \\ Harry J. Smith, Jun 02 2009

A041018 Numerators of continued fraction convergents to sqrt(13).

Original entry on oeis.org

3, 4, 7, 11, 18, 119, 137, 256, 393, 649, 4287, 4936, 9223, 14159, 23382, 154451, 177833, 332284, 510117, 842401, 5564523, 6406924, 11971447, 18378371, 30349818, 200477279, 230827097, 431304376, 662131473
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010122 (continued fraction for sqrt(13)).

Programs

  • Maple
    a[0]:=3: a[-1]:=1: b(0):=6: b(1):=1; b(2):=1: b(3):=1: b(4):=1:
    for n from 1 to 100 do  k:=n mod 5:
       a[n]:=b(k)*a[n-1]+a[n-2]:
       printf("%12d", a[n]):
    end do: # Paul Weisenhorn, Aug 17 2018
  • Mathematica
    Numerator[Convergents[Sqrt[13], 30]] (* Vincenzo Librandi, Oct 27 2013 *)
    CoefficientList[Series[(3 + 4*x + 7*x^2 + 11*x^3 + 18*x^4 + 11*x^5 - 7*x^6 + 4*x^7 - 3*x^8 + x^9)/(1 - 36*x^5 - x^10),{x,0,50}],x] (* Stefano Spezia, Aug 31 2018 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A006497(3*n+1),
a(5*n+1) = (A006497(3*n+2)-A006497(3*n+1))/2,
a(5*n+2) = (A006497(3*n+2)+A006497(3*n+1))/2,
a(5*n+3) = A006497(3*n+2),
a(5*n+4) = A006497(3*n+3)/2.
(End)
G.f.: (3 + 4*x + 7*x^2 + 11*x^3 + 18*x^4 + 11*x^5 - 7*x^6 + 4*x^7 - 3*x^8 + x^9)/(1 - 36*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = A010122(n)*a(n-1)+a(n-2) with a(0)=3, a(-1)=1. - Paul Weisenhorn, Aug 19 2018

A041019 Denominators of continued fraction convergents to sqrt(13).

Original entry on oeis.org

1, 1, 2, 3, 5, 33, 38, 71, 109, 180, 1189, 1369, 2558, 3927, 6485, 42837, 49322, 92159, 141481, 233640, 1543321, 1776961, 3320282, 5097243, 8417525, 55602393, 64019918, 119622311, 183642229, 303264540, 2003229469, 2306494009, 4309723478, 6616217487, 10925940965
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010122 (continued fraction for sqrt(13)), A041018 (numerators).

Programs

  • Magma
    I:=[1, 1, 2, 3, 5, 33, 38, 71, 109, 180]; [n le 10 select I[n] else 36*Self(n-5)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[13], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    CoefficientList[Series[((1 - 2 x + 4 x^2 - 3 x^3 + x^4) (1 + 3 x + 4 x^2 + 2 x^3 + x^4))/(1 - 36 x^5 - x^10), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    LinearRecurrence[{0,0,0,0,36,0,0,0,0,1},{1,1,2,3,5,33,38,71,109,180},40] (* Harvey P. Dale, Sep 30 2016 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A006190(3*n+1),
a(5*n+1) = (A006190(3*n+2) - A006190(3*n+1))/2,
a(5*n+2) = (A006190(3*n+2) + A006190(3*n+1))/2,
a(5*n+3) = A006190(3*n+2) and a(5*n+4) = A006190(3*n+3)/2. (End)
G.f.: ((1 - 2*x + 4*x^2 - 3*x^3 + x^4)*(1 + 3*x + 4*x^2 + 2*x^3 + x^4))/(1 - 36*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = A010122(n)*a(n-1) + a(n-2), a(0)=1, a(-1)=0. - Paul Weisenhorn, Aug 17 2018

Extensions

More terms from Vincenzo Librandi, Dec 10 2013

A188655 Decimal expansion of (2+sqrt(13))/3.

Original entry on oeis.org

1, 8, 6, 8, 5, 1, 7, 0, 9, 1, 8, 2, 1, 3, 2, 9, 7, 6, 4, 3, 7, 3, 0, 7, 3, 7, 5, 5, 8, 2, 3, 4, 9, 8, 6, 4, 8, 7, 5, 0, 4, 3, 2, 1, 9, 1, 2, 8, 1, 7, 4, 8, 7, 3, 7, 5, 7, 0, 1, 5, 1, 0, 1, 8, 7, 4, 2, 3, 8, 8, 9, 8, 2, 7, 6, 4, 3, 3, 6, 8, 1, 5, 0, 6, 8, 2, 0, 6, 3, 6, 0, 6, 7, 2, 8, 3, 0, 2, 3, 9, 2, 2, 4, 5, 0, 4, 7, 2, 7, 3, 4, 1, 3, 5, 4, 5, 1, 3, 4, 5, 8, 6, 7, 6, 8, 9, 2, 7, 5, 4
Offset: 1

Views

Author

Clark Kimberling, Apr 09 2011

Keywords

Comments

Decimal expansion of the length/width ratio of a (4/3)-extension rectangle.
See A188640 for definitions of shape and r-extension rectangle.
A (4/3)-extension rectangle matches the continued fraction [1,1,6,1,1,1,1,6,1,1,1,1,6,...] for the shape L/W= (2+sqrt(13))/3. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,...]. Specifically, for the (4/3)-extension rectangle, 1 square is removed first, then 1 square, then 6 squares, then 1 square, then 1 square,..., so that the original rectangle is partitioned into an infinite collection of squares.

Examples

			length/width = 1.868517091821329764373....
		

Crossrefs

Programs

  • Mathematica
    r = 4/3; t = (r + (4 + r^2)^(1/2))/2; RealDigits[ N[ FullSimplify@ t, 111]][[1]]
    RealDigits[(2 + Sqrt@ 13)/3, 10, 111][[1]] (* Or *)
    RealDigits[Exp@ ArcSinh[2/3], 10, 111][[1]] (* Robert G. Wilson v, Aug 17 2011 *)

Extensions

a(130) corrected by Georg Fischer, Apr 01 2020

A293292 Numbers with last digit less than 5 (in base 10).

Original entry on oeis.org

0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 70, 71, 72, 73, 74, 80, 81, 82, 83, 84, 90, 91, 92, 93, 94, 100, 101, 102, 103, 104, 110, 111, 112, 113, 114, 120, 121, 122, 123, 124, 130
Offset: 1

Views

Author

Bruno Berselli, Oct 05 2017

Keywords

Comments

Equivalently, numbers k such that floor(k/5) = 2*floor(k/10).
After 0, partial sums of A010122 starting from the 2nd term.
The sequence differs from A007091 after a(25).
Also numbers k such that floor(k/5) is even. - Peter Luschny, Oct 05 2017

Crossrefs

Cf. A010122, A239229, A257145, A293481 (complement).
Sequences of the type floor(n/d) = (10/d)*floor(n/10), where d is a factor of 10: A008592 (d=1), A197652 (d=2), this sequence (d=5), A001477 (d=10).
Sequences of the type n + r*floor(n/r): A005843 (r=1), A042948 (r=2), A047240 (r=3), A047476 (r=4), this sequence (r=5).

Programs

  • Magma
    [n: n in [0..130] | n mod 10 lt 5];
    
  • Magma
    [n: n in [0..130] | IsEven(Floor(n/5))];
    
  • Magma
    [n+5*Floor(n/5): n in [0..70]];
    
  • Maple
    select(k -> type(floor(k/5), even), [$0..130]); # Peter Luschny, Oct 05 2017
  • Mathematica
    Table[n + 5 Floor[n/5], {n, 0, 70}]
    Reap[For[k = 0, k <= 130, k++, If[Floor[k/5] == 2*Floor[k/10], Sow[k]]]][[2, 1]] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 10}, 66] (* Jean-François Alcover, Oct 05 2017 *)
  • PARI
    concat(0, Vec(x^2*(1 + x + x^2 + x^3 + 6*x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^70))) \\ Colin Barker, Oct 05 2017
    
  • PARI
    select(k->floor(k/5) == 2*floor(k/10), vector(1000, k, k)) \\ Colin Barker, Oct 05 2017
    
  • Python
    [k for k in range(131) if (k//5) % 2 == 0] # Peter Luschny, Oct 05 2017
    
  • Python
    def A293292(n): return (n-1<<1)-(n-1)%5 # Chai Wah Wu, Oct 29 2024
    
  • Sage
    [k for k in (0..130) if 2.divides(floor(k/5))] # Peter Luschny, Oct 05 2017

Formula

G.f.: x^2*(1 + x + x^2 + x^3 + 6*x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6).
a(n) = (n-1) + 5*floor((n-1)/5) = 10*floor((n-1)/5) + ((n-1) mod 5).
a(n) = A257145(n+2) - A239229(n-1). - R. J. Mathar, Oct 05 2017
a(n) = 2n-2-((n-1) mod 5). - Chai Wah Wu, Oct 29 2024

Extensions

Definition by David A. Corneth, Oct 05 2017

A293481 Numbers with last digit greater than or equal to 5 (in base 10).

Original entry on oeis.org

5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 25, 26, 27, 28, 29, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 55, 56, 57, 58, 59, 65, 66, 67, 68, 69, 75, 76, 77, 78, 79, 85, 86, 87, 88, 89, 95, 96, 97, 98, 99, 105, 106, 107, 108, 109, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129
Offset: 1

Views

Author

Bruno Berselli, Oct 10 2017

Keywords

Comments

Equivalently, numbers k such that floor(k/5) is odd.
Also numbers k such that ceiling(-k/5) is odd. - Peter Luschny, Oct 10 2017

Crossrefs

Complement of A293292.
Cf. A010122 (first differences, after 3).

Programs

  • Magma
    [n: n in [0..150] | n mod 10 ge 5];
    
  • Maple
    select(n -> type(ceil(-n/5), odd), [$0..130]); # Peter Luschny, Oct 10 2017
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 1, -1}, {5, 6, 7, 8, 9, 15}, 70]
    (* Second program: *)
    Select[Range[129], Mod[#, 10] >= 5 &] (* Jean-François Alcover, Oct 10 2017 *)
  • PARI
    select(k -> (k\5) % 2, vector(130, k, k)) \\ Peter Luschny, Oct 10 2017
    
  • PARI
    Vec(x*(5 + x + x^2 + x^3 + x^4 + x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^100)) \\ Colin Barker, Oct 10 2017
    
  • Python
    [k for k in range(130) if (k//5) % 2 == 1] # Peter Luschny, Oct 10 2017
    
  • Python
    def A293481(n): return (n<<1)+3-(n-1)%5 # Chai Wah Wu, Oct 29 2024
    
  • Sage
    [k for k in (0..130) if not 2.divides(k//5)] # Peter Luschny, Oct 10 2017

Formula

G.f.: x*(5 + x + x^2 + x^3 + x^4 + x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6).
a(n) = A293292(n) + 5.
a(n) = 2n+3-((n-1) mod 5). - Chai Wah Wu, Oct 29 2024

A319749 a(n) is the numerator of the Heron sequence with h(0)=3.

Original entry on oeis.org

3, 11, 119, 14159, 200477279, 40191139395243839, 1615327685887921300502934267457919, 2609283532796026943395592527806764363779539144932833602430435810559
Offset: 0

Views

Author

Paul Weisenhorn, Sep 27 2018

Keywords

Comments

The denominator of the Heron sequence is in A319750.
The following relationship holds between the numerator of the Heron sequence and the numerator of the continued fraction A041018(n)/A041019(n) convergent to sqrt(13).
n even: a(n)=A041018((5*2^n-5)/3).
n odd: a(n)=A041018((5*2^n-1)/3).
More generally, all numbers c(n)=A078370(n)=(2n+1)^2+4 have the same relationship between the numerator of the Heron sequence and the numerator of the continued fraction convergent to 2n+1.
sqrt(c(n)) has the continued fraction 2n+1; n,1,1,n,4n+2.
hn(n)^2-c(n)*hd(n)^2=4 for n>1.
From Peter Bala, Mar 29 2022: (Start)
Applying Heron's method (sometimes called the Babylonian method) to approximate the square root of the function x^2 + 4, starting with a guess equal to x, produces the sequence of rational functions [x, 2*T(1,(x^2+2)/2)/x, 2*T(2,(x^2+2)/2)/( 2*x*T(1,(x^2+2)/2) ), 2*T(4,(x^2+2)/2)/( 4*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2) ), 2*T(8,(x^2+2)/2)/( 8*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2)*T(4,(x^2+2)/2) ), ...], where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. The present sequence is the case x = 3. Cf. A001566 and A058635 (case x = 1), A081459 and A081460 (essentially the case x = 4). (End)

Examples

			A078370(2)=29.
hn(0)=A041046(0)=5; hn(1)=A041046(3)=27; hn(2)=A041046(5)=727;
hn(3)=A041046(13)=528527.
		

Crossrefs

2*T(2^n,x/2) modulo differences of offset: A001566 (x = 3 and x = 7), A003010 (x = 4), A003487 (x = 5), A003423 (x = 6), A346625 (x = 8), A135927 (x = 10), A228933 (x = 18).

Programs

  • Maple
    hn[0]:=3:  hd[0]:=1:
    for n from 1 to 6 do
    hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2:
    hd[n]:=hn[n-1]*hd[n-1]:
       printf("%5d%40d%40d\n", n, hn[n], hd[n]):
    end do:
    #alternative program
    a := n -> if n = 0 then 3 else simplify( 2*ChebyshevT(2^(n-1), 11/2) ) end if:
    seq(a(n), n = 0..7); # Peter Bala, Mar 16 2022
  • Python
    def aupton(nn):
        hn, hd, alst = 3, 1, [3]
        for n in range(nn):
            hn, hd = (hn**2 + 13*hd**2)//2, hn*hd
            alst.append(hn)
        return alst
    print(aupton(7)) # Michael S. Branicky, Mar 16 2022

Formula

h(n) = hn(n)/hd(n); hn(0)=3; hd(0)=1.
hn(n+1) = (hn(n)^2+13*hd(n)^2)/2.
hd(n+1) = hn(n)*hd(n).
A041018(n) = A010122(n)*A041018(n-1) + A041018(n-2).
A041019(n) = A010122(n)*A041019(n-1) + A041019(n-2).
From Peter Bala, Mar 16 2022: (Start)
a(n) = 2*T(2^(n-1),11/2) for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = 2*T(2^n, 3*sqrt(-1)/2) for n >= 2.
a(n) = ((11 + 3*sqrt(13))/2)^(2^(n-1)) + ((11 - 3*sqrt(13))/2)^(2^(n-1)) for n >= 1.
a(n+1) = a(n)^2 - 2 for n >= 1.
a(n) = A057076(2^(n-1)) for n >= 1.
Engel expansion of (1/6)*(13 - 3*sqrt(13)); that is, (1/6)*(13 - 3*sqrt(13)) = 1/3 + 1/(3*11) + 1/(3*11*119) + .... (Define L(n) = (1/2)*(n - sqrt(n^2 - 4)) for n >= 2 and show L(n) = 1/n + L(n^2-2)/n. Iterate this relation with n = 11. See also Liardet and Stambul, Section 4.)
sqrt(13) = 6*Product_{n >= 0} (1 - 1/a(n)).
sqrt(13) = (9/5)*Product_{n >= 0} (1 + 2/a(n)). See A001566. (End)

Extensions

a(6) and a(7) added by Peter Bala, Mar 16 2022

A319750 a(n) is the denominator of the Heron sequence with h(0) = 3.

Original entry on oeis.org

1, 3, 33, 3927, 55602393, 11147016454528647, 448011292165037607943004375755833, 723685043824607606355691108666081531638582859833105061571146291527
Offset: 0

Views

Author

Paul Weisenhorn, Sep 27 2018

Keywords

Comments

The numerators of the Heron sequence are in A319749.
There is the following relationship between the denominator of the Heron sequence and the denominator of the continued fraction A041018(n)/ A041019(n) convergent to sqrt(13).
n even: a(n) = A041019((5*2^n-5)/3).
n odd: a(n) = A041019((5*2^n-1)/3).
General: all numbers c(n) = A078370(n) = (2*n+1)^2 + 4 have the same relationship between the denominator of the Heron sequence and the denominator of the continued fraction convergent to 2*n+1.
sqrt(c(n)) has the continued fraction [2*n+1; n, 1, 1, n, 4*n+2].
hn(n)^2 - c(n)*hd(n)^2 = 4 for n > 1.

Examples

			A078370(2) = 29.
hd(0) = A041047(0) = 1, hd(1) = A041047(3) = 5,
hd(2) = A041047(5) = 135, hd(3) = A041047(13) = 38145.
		

Crossrefs

Programs

  • Maple
    hn[0]:=3: hd[0]:=1:
    for n from 1 to 6 do
      hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2:
      hd[n]:=hn[n-1]*hd[n-1]:
      printf("%5d%40d%40d\n", n, hn[n], hd[n]):
    end do:
  • Python
    def aupton(nn):
        hn, hd, alst = 3, 1, [1]
        for n in range(nn):
            hn, hd = (hn**2 + 13*hd**2)//2, hn*hd
            alst.append(hd)
        return alst
    print(aupton(7)) # Michael S. Branicky, Mar 15 2022

Formula

h(n) = hn(n)/hd(n), hn(0) = 3, hd(0) = 1.
hn(n+1) = (hn(n)^2 + 13*hd(n)^2)/2.
hd(n+1) = hn(n)*hd(n).
A041018(n) = A010122(n)*A041018(n-1) + A041018(n-2).
A041019(n) = A010122(n)*A041019(n-1) + A041019(n-2).
a(0) = 1, a(1) = 3 and a(n) = 2*T(2^(n-2), 11/2)*a(n-1) for n >= 2, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Mar 16 2022

Extensions

a(5) corrected and terms a(6) and a(7) added by Peter Bala, Mar 15 2022
Showing 1-8 of 8 results.