cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A248242 Egyptian fraction representation of sqrt(13) (A010470) using a greedy function.

Original entry on oeis.org

3, 2, 10, 181, 37860, 2063394882, 20133724366323386460, 895769948382354175062611801976979893814, 1095684829796116398764171865109547325653507924058299202087102696023776712107256
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
    0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 13]]

A209927 Decimal expansion of sqrt(3 + sqrt(3 + sqrt(3 + sqrt(3 + ... )))).

Original entry on oeis.org

2, 3, 0, 2, 7, 7, 5, 6, 3, 7, 7, 3, 1, 9, 9, 4, 6, 4, 6, 5, 5, 9, 6, 1, 0, 6, 3, 3, 7, 3, 5, 2, 4, 7, 9, 7, 3, 1, 2, 5, 6, 4, 8, 2, 8, 6, 9, 2, 2, 6, 2, 3, 1, 0, 6, 3, 5, 5, 2, 2, 6, 5, 2, 8, 1, 1, 3, 5, 8, 3, 4, 7, 4, 1, 4, 6, 5, 0, 5, 2, 2, 2, 6, 0, 2, 3, 0, 9, 5, 4, 1, 0, 0, 9, 2, 4, 5, 3, 5, 8, 8, 3, 6, 7, 5, 7
Offset: 1

Views

Author

Alonso del Arte, Mar 17 2012

Keywords

Comments

The number x given by the infinitely nested radical for n = 3 is such that x^2 = x + 3, bearing some similarity to the golden ratio phi with its property that phi^2 = phi + 1. Also, 3/x = x - 1.
The mentioned polynomial x^2 - x - 3 has the present number as positive root, and the negative one is -A223139. - Wolfdieter Lang, Aug 29 2022
It is the spectral radius of the bull-graph (see Seeger and Sossa, 2023). - Stefano Spezia, Sep 19 2023
c^n = A006130(n) + A006130(n-1) * d, where c = (1 + sqrt(13))/2 and d = (-1 + sqrt(13))/2. - Gary W. Adamson, Nov 25 2023
c^n = A052533(n) + A006130(n-1)*c, with A006130(-1) = 0. This is also valid for powers of 1/c = A356033, with A052533 and A006130 given there in terms of S-Chebyshev polynomials (A049310), used for negative indices. - Wolfdieter Lang, Nov 26 2023

Examples

			2.30277563773...
		

Crossrefs

Programs

  • Maple
    Digits:=140:
    evalf((sqrt(13)+1)/2);  # Alois P. Heinz, Sep 19 2023
  • Mathematica
    RealDigits[(1 + Sqrt[13])/2, 10, 130][[1]]
    RealDigits[ Fold[ Sqrt[#1 + #2] &, 0, Table[3, {n, 168}]], 10, 111][[1]] (* Robert G. Wilson v, Oct 02 2018 *)
  • PARI
    (sqrt(13)+1)/2 \\ Altug Alkan, Oct 03 2018

Formula

Closed form: (sqrt(13) + 1)/2 = A098316-1 = A085550+2 = 3*(A188943-1).

A041018 Numerators of continued fraction convergents to sqrt(13).

Original entry on oeis.org

3, 4, 7, 11, 18, 119, 137, 256, 393, 649, 4287, 4936, 9223, 14159, 23382, 154451, 177833, 332284, 510117, 842401, 5564523, 6406924, 11971447, 18378371, 30349818, 200477279, 230827097, 431304376, 662131473
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010122 (continued fraction for sqrt(13)).

Programs

  • Maple
    a[0]:=3: a[-1]:=1: b(0):=6: b(1):=1; b(2):=1: b(3):=1: b(4):=1:
    for n from 1 to 100 do  k:=n mod 5:
       a[n]:=b(k)*a[n-1]+a[n-2]:
       printf("%12d", a[n]):
    end do: # Paul Weisenhorn, Aug 17 2018
  • Mathematica
    Numerator[Convergents[Sqrt[13], 30]] (* Vincenzo Librandi, Oct 27 2013 *)
    CoefficientList[Series[(3 + 4*x + 7*x^2 + 11*x^3 + 18*x^4 + 11*x^5 - 7*x^6 + 4*x^7 - 3*x^8 + x^9)/(1 - 36*x^5 - x^10),{x,0,50}],x] (* Stefano Spezia, Aug 31 2018 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A006497(3*n+1),
a(5*n+1) = (A006497(3*n+2)-A006497(3*n+1))/2,
a(5*n+2) = (A006497(3*n+2)+A006497(3*n+1))/2,
a(5*n+3) = A006497(3*n+2),
a(5*n+4) = A006497(3*n+3)/2.
(End)
G.f.: (3 + 4*x + 7*x^2 + 11*x^3 + 18*x^4 + 11*x^5 - 7*x^6 + 4*x^7 - 3*x^8 + x^9)/(1 - 36*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = A010122(n)*a(n-1)+a(n-2) with a(0)=3, a(-1)=1. - Paul Weisenhorn, Aug 19 2018

A010122 Continued fraction for sqrt(13).

Original entry on oeis.org

3, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6
Offset: 0

Views

Author

Keywords

Comments

Eventual period is (1, 1, 1, 1, 6). - Zak Seidov, Mar 05 2011

Examples

			3.605551275463989293119221267... = 3 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 02 2009
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 96 at p. 264.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 428.

Crossrefs

Cf. A010470 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[13],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 13000); x=contfrac(sqrt(13)); for (n=0, 20000, write("b010122.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 02 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(5^e) = 6, and a(p^e) = 1 for p != 5.
Dirichlet g.f.: zeta(s) * (1 + 1/5^(s-1)). (End)
G.f.: (3 + x + x^2 + x^3 + x^4 + 3*x^5)/(1 - x^5). - Stefano Spezia, Aug 17 2024

A295330 Decimal expansion of sqrt(13)/2.

Original entry on oeis.org

1, 8, 0, 2, 7, 7, 5, 6, 3, 7, 7, 3, 1, 9, 9, 4, 6, 4, 6, 5, 5, 9, 6, 1, 0, 6, 3, 3, 7, 3, 5, 2, 4, 7, 9, 7, 3, 1, 2, 5, 6, 4, 8, 2, 8, 6, 9, 2, 2, 6, 2, 3, 1, 0, 6, 3, 5, 5, 2, 2, 6, 5, 2, 8, 1, 1, 3, 5, 8, 3, 4, 7, 4, 1, 4, 6, 5, 0, 5, 2, 2, 2, 6, 0, 2, 3, 0, 9, 5, 4, 1, 0, 0, 9, 2, 4, 5, 3, 5, 8
Offset: 1

Views

Author

Wolfdieter Lang, Nov 20 2017

Keywords

Comments

In a regular hexagon inscribed in a circle of radius R the largest distance between any vertex and a midpoint of a side, after division of R, is sqrt(13)/2. The two smaller distance ratios are sqrt(7)/2 = A242703 and 1/2.
The regular period 6 continued fraction of sqrt(13)/2 is [1; 1, 4, 14, 4, 1, 2], and the convergents are given in A295331/A295332.
Essentially the same as A223139, A209927, A098316 and A085550. - R. J. Mathar, Nov 23 2017

Examples

			1.8027756377319946465596106337352479731256482869226231063552265281135834741465...
		

Crossrefs

Programs

A085550 Decimal expansion of (sqrt(13)-3)/2.

Original entry on oeis.org

3, 0, 2, 7, 7, 5, 6, 3, 7, 7, 3, 1, 9, 9, 4, 6, 4, 6, 5, 5, 9, 6, 1, 0, 6, 3, 3, 7, 3, 5, 2, 4, 7, 9, 7, 3, 1, 2, 5, 6, 4, 8, 2, 8, 6, 9, 2, 2, 6, 2, 3, 1, 0, 6, 3, 5, 5, 2, 2, 6, 5, 2, 8, 1, 1, 3, 5, 8, 3, 4, 7, 4, 1, 4, 6, 5, 0, 5, 2, 2, 2, 6, 0, 2, 3, 0, 9, 5, 4, 1, 0, 0, 9, 2, 4, 5, 3, 5, 8, 8, 3, 6, 7, 5, 7
Offset: 0

Views

Author

Cino Hilliard, Jul 04 2003

Keywords

Examples

			0.30277563773199464655961...
		

Crossrefs

Cf. A010470 (sqrt(13)).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[13] - 3)/2, 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    (sqrt(13)-3)/2 \\ Michel Marcus, Jan 16 2020

Formula

Equals Sum_{k>=1} (-1)^(k-1)/(A006190(k)*A006190(k+1)). - Vladimir Shevelev, Feb 23 2013
Tan(arctan(c) + arctan(c^3)) = 1/3. - Gary W. Adamson, Apr 02 2024

A171983 Beatty sequence for sqrt(13).

Original entry on oeis.org

3, 7, 10, 14, 18, 21, 25, 28, 32, 36, 39, 43, 46, 50, 54, 57, 61, 64, 68, 72, 75, 79, 82, 86, 90, 93, 97, 100, 104, 108, 111, 115, 118, 122, 126, 129, 133, 137, 140, 144, 147, 151, 155, 158, 162, 165, 169, 173, 176, 180, 183, 187, 191, 194, 198, 201, 205
Offset: 1

Views

Author

Vincenzo Librandi, Jan 21 2010

Keywords

Crossrefs

Cf. A010470.

Programs

Formula

a(n) = floor(n*sqrt(13)). - Jon E. Schoenfield, Jun 18 2010

A176019 Decimal expansion of (3+sqrt(13))/6.

Original entry on oeis.org

1, 1, 0, 0, 9, 2, 5, 2, 1, 2, 5, 7, 7, 3, 3, 1, 5, 4, 8, 8, 5, 3, 2, 0, 3, 5, 4, 4, 5, 7, 8, 4, 1, 5, 9, 9, 1, 0, 4, 1, 8, 8, 2, 7, 6, 2, 3, 0, 7, 5, 4, 1, 0, 3, 5, 4, 5, 1, 7, 4, 2, 1, 7, 6, 0, 3, 7, 8, 6, 1, 1, 5, 8, 0, 4, 8, 8, 3, 5, 0, 7, 4, 2, 0, 0, 7, 6, 9, 8, 4, 7, 0, 0, 3, 0, 8, 1, 7, 8, 6, 2, 7, 8, 9, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (3+sqrt(13))/6 is A010690.
Minimal polynomial: 9*x^2 - 9*x - 1. - Amiram Eldar, Dec 03 2024

Examples

			1.10092521257733154885320354457841599104188276230754...
		

Crossrefs

Cf. A010470 (decimal expansion of sqrt(13)), A010690 (repeat 1, 9), A092936.

Programs

  • Mathematica
    RealDigits[(3 + Sqrt[13])/6, 10, 120][[1]] (* Amiram Eldar, Dec 03 2024 *)

Formula

Equals Product_{k>=2} (1 + (-1)^k/A092936(k)). - Amiram Eldar, Dec 03 2024

A176322 Decimal expansion of sqrt(1365).

Original entry on oeis.org

3, 6, 9, 4, 5, 9, 0, 6, 4, 0, 3, 8, 2, 2, 3, 3, 1, 9, 9, 1, 6, 3, 5, 6, 1, 1, 5, 9, 9, 7, 9, 7, 1, 4, 2, 0, 5, 6, 5, 1, 5, 9, 7, 4, 2, 2, 3, 1, 7, 1, 5, 5, 8, 7, 4, 6, 3, 9, 0, 6, 4, 1, 8, 8, 8, 4, 9, 2, 6, 6, 0, 6, 6, 7, 2, 5, 1, 5, 9, 4, 7, 0, 2, 0, 9, 0, 3, 0, 4, 0, 6, 0, 5, 4, 4, 6, 5, 2, 9, 0, 3, 8, 1, 2, 5
Offset: 2

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of sqrt(1365) is (repeat 1, 17, 2, 17, 1, 72) preceded by 36.

Examples

			36.94590640382233199163...
		

Crossrefs

Cf. A002194 (sqrt(3)), A002163 (sqrt(5)), A010465 (sqrt(7)), A010470 (sqrt(13)).
Cf. A176321 ((35+sqrt(1365))/14).

Programs

  • Magma
    SetDefaultRealField(RealField(120)); Sqrt(1365); // G. C. Greubel, Nov 26 2019
    
  • Maple
    evalf( sqrt(1365), 120); # G. C. Greubel, Nov 26 2019
  • Mathematica
    RealDigits[Sqrt[1365],10,120][[1]] (* Harvey P. Dale, Oct 09 2017 *)
  • PARI
    default(realprecision, 120); sqrt(1365) \\ G. C. Greubel, Nov 26 2019
    
  • Sage
    numerical_approx(sqrt(1365), digits=120) # G. C. Greubel, Nov 26 2019

Formula

Equals sqrt(3)*sqrt(5)*sqrt(7)*sqrt(13).

A194392 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) < 0, where r=sqrt(13) and < > denotes fractional part.

Original entry on oeis.org

1, 3, 29, 31, 33, 34, 35, 36, 37, 39, 41, 67, 69, 71, 72, 73, 74, 75, 77, 79, 105, 107, 143, 145, 181, 183, 209, 211, 213, 214, 215, 216, 217, 219, 221, 247, 249, 251, 252, 253, 254, 255, 257, 259, 285, 287, 323, 325, 361, 363, 389, 391, 393, 394, 395
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2011

Keywords

Comments

See A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[13]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 400}];
    Flatten[Position[t1, 1]]       (* A194392 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}];
    Flatten[Position[t2, 1]]       (* A194393 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];
    Flatten[Position[t3, 1]]       (* A194394 *)
Showing 1-10 of 20 results. Next