cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A010500 Decimal expansion of square root of 46.

Original entry on oeis.org

6, 7, 8, 2, 3, 2, 9, 9, 8, 3, 1, 2, 5, 2, 6, 8, 1, 3, 9, 0, 6, 4, 5, 5, 6, 3, 2, 6, 6, 2, 5, 9, 6, 9, 1, 0, 5, 1, 9, 5, 7, 4, 8, 3, 2, 3, 9, 2, 3, 2, 8, 8, 2, 3, 2, 7, 5, 0, 2, 1, 9, 5, 8, 2, 0, 8, 0, 7, 2, 8, 2, 6, 3, 9, 8, 7, 1, 1, 2, 5, 8, 9, 8, 6, 2, 6, 4, 0, 9, 4, 0, 9, 3, 6, 3, 3, 0, 0, 4
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 6 followed by {1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12} repeated. - Harry J. Smith, Jun 06 2009

Examples

			6.782329983125268139064556326625969105195748323923288232750219582080728...
		

Crossrefs

Cf. A010136 Continued fraction. - Harry J. Smith, Jun 06 2009

Programs

  • Maple
    Digits:=100: evalf(46^(1/2)); # Wesley Ivan Hurt, Jan 20 2017
  • Mathematica
    RealDigits[N[Sqrt[46],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2011 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(46); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010500.txt", n, " ", d)); } \\ Harry J. Smith, Jun 06 2009

A190567 Continued fraction expansion of 46*sqrt(46).

Original entry on oeis.org

311, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622
Offset: 0

Views

Author

Bruno Berselli, May 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [311] cat &cat[ [1,76,1,622]: n in [1..18] ];
    
  • Magma
    I:=[311,1,76,1,622]; [n le 5 select I[n] else Self(n-4): n in [1..80]]; // Vincenzo Librandi, Jun 14 2013
  • Mathematica
    ContinuedFraction[46 Sqrt[46], 80] (* or *) PadRight[{311}, 80, {622, 1, 76, 1}]
    CoefficientList[Series[(311 + x + 76 x^2 + x^3 + 311 x^4) / (1 - x^4), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 14 2013 *)
  • PARI
    a(n)=if(n,[622,1,76,1][n%4+1],311) \\ Charles R Greathouse IV, May 13 2011
    

Formula

G.f.: (311+x+76*x^2+x^3+311*x^4)/(1-x^4).
a(n) = 1+3*(1+(-1)^n)*(116+91*i^n)/2 with n>0, i=sqrt(-1) and a(0)=311.
a(n) = (-1513*(n mod 4)+575*((n+1) mod 4)+125*((n+2) mod 4)+2213*((n+3) mod 4))/12 for n>0.
a(n) = a(n-4), n>=5. - Vincenzo Librandi, Jun 14 2013
Showing 1-2 of 2 results.