A010146 Continued fraction for sqrt(62).
7, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14, 1, 6, 1, 14
Offset: 0
Examples
7.87400787401181101968503444... = 7 + 1/(1 + 1/(6 + 1/(1 + 1/(14 + ...)))). - _Harry J. Smith_, Jun 07 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
Programs
-
Magma
[7] cat &cat[ [1, 6, 1, 14]: n in [1..18]]; // Bruno Berselli, Mar 08 2011
-
Mathematica
ContinuedFraction[Sqrt[62],300] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2011 *) Join[{7},LinearRecurrence[{0, 0, 0, 1},{1, 6, 1, 14},72]] (* Ray Chandler, Aug 25 2015 *) PadRight[{7},120,{14,1,6,1}] (* Harvey P. Dale, Jan 20 2019 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 22000); x=contfrac(sqrt(62)); for (n=0, 20000, write("b010146.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 07 2009
Formula
a(n) = 1+(1+(-1)^n)*(9+4*i^n)/2 - 7*A000007(n), where i is the imaginary unit. - Bruno Berselli, Mar 08 2011 - Mar 15 2011
From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2) = 6, a(2^e) = 14 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 5/2^s + 1/2^(2*s-3)). (End)
Comments