cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A041150 Numerators of continued fraction convergents to sqrt(85).

Original entry on oeis.org

9, 37, 46, 83, 378, 6887, 27926, 34813, 62739, 285769, 5206581, 21112093, 26318674, 47430767, 216041742, 3936182123, 15960770234, 19896952357, 35857722591, 163327842721, 2975758891569, 12066363408997
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 17 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A087798.
For the terms of the periodic sequence of the continued fraction for sqrt(85) see A010158. We observe that its period is five. The decimal expansion of sqrt(85) is A010536. (End)

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[85], 30]] (* Vincenzo Librandi, Oct 29 2013 *)

Formula

From Johannes W. Meijer, Jun 17 2010: (Start)
a(5*n) = A087798(3*n+1), a(5*n+1) = (A087798(3*n+2) - A087798(3*n+1))/2, a(5*n+2) = (A087798(3*n+2) + A087798(3*n+1))/2, a(5*n+3) = A087798(3*n+2) and a(5*n+4) = A087798(3*n+3)/2. (End)
G.f.: -(x^9-9*x^8+37*x^7-46*x^6+83*x^5+378*x^4+83*x^3+46*x^2+37*x+9) / (x^10+756*x^5-1). - Colin Barker, Nov 04 2013

A041151 Denominators of continued fraction convergents to sqrt(85).

Original entry on oeis.org

1, 4, 5, 9, 41, 747, 3029, 3776, 6805, 30996, 564733, 2289928, 2854661, 5144589, 23433017, 426938895, 1731188597, 2158127492, 3889316089, 17715391848, 322766369353, 1308780869260, 1631547238613, 2940328107873, 13392859670105, 244011802169763, 989440068349157
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A099371.
For the terms of the periodic sequence of the continued fraction for sqrt(85) see A010158. We observe that its period is five. The decimal expansion of sqrt(85) is A010536. (End)

Crossrefs

Programs

  • Magma
    I:=[1, 4, 5, 9, 41, 747, 3029, 3776, 6805, 30996]; [n le 10 select I[n] else 756*Self(n-5)+Self(n-10): n in [1..30]]; // Vincenzo Librandi, Dec 12 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[85], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[85], 30]] (* Vincenzo Librandi, Dec 12 2013 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A099371(3*n+1), a(5*n+1) = (A099371(3*n+2)-A099371(3*n+1))/2, a(5*n+2) = (A099371(3*n+2)+A099371(3*n+1))/2, a(5*n+3):= A099371(3*n+2) and a(5*n+4) = A099371(3*n+3)/2. (End)
G.f.: -(x^8-4*x^7+5*x^6-9*x^5+41*x^4+9*x^3+5*x^2+4*x+1) / (x^10+756*x^5-1). - Colin Barker, Nov 11 2013
a(n) = 756*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 12 2013

A010536 Decimal expansion of square root of 85.

Original entry on oeis.org

9, 2, 1, 9, 5, 4, 4, 4, 5, 7, 2, 9, 2, 8, 8, 7, 3, 1, 0, 0, 0, 2, 2, 7, 4, 2, 8, 1, 7, 6, 2, 7, 9, 3, 1, 5, 7, 2, 4, 6, 8, 0, 5, 0, 4, 8, 7, 2, 2, 4, 6, 4, 0, 0, 8, 0, 0, 7, 7, 5, 2, 2, 0, 5, 4, 4, 2, 6, 7, 1, 0, 2, 6, 8, 0, 1, 8, 7, 5, 4, 6, 0, 7, 6, 7, 8, 9, 4, 0, 9, 0, 7, 9, 3, 2, 8, 0, 5, 6
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 9 followed by {4, 1, 1, 4, 18} repeated. - Harry J. Smith, Jun 10 2009

Examples

			9.219544457292887310002274281762793157246805048722464008007752205442671....
		

Crossrefs

Cf. A010158 (continued fraction). - Harry J. Smith, Jun 10 2009

Programs

  • Mathematica
    RealDigits[N[85^(1/2),200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 23 2012 *)
    RealDigits[Sqrt[85],10,120][[1]] (* Harvey P. Dale, Jul 23 2024 *)
  • PARI
    default(realprecision, 20080); x=sqrt(85); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010536.txt", n, " ", d));  \\ Harry J. Smith, Jun 10 2009
    
  • Python
    from math import isqrt
    def aupton(nn): return list(map(int, str(isqrt(85 * 10**(2*nn)))))[:nn]
    print(aupton(100)) # Michael S. Branicky, Sep 02 2021
Showing 1-3 of 3 results.