cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A070438 a(n) = n^2 mod 15.

Original entry on oeis.org

0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Comments

Equivalently, n^6 mod 15. - Ray Chandler, Dec 27 2023

Crossrefs

Programs

Formula

From Reinhard Zumkeller, Apr 24 2009: (Start)
a(m*n) = a(m)*a(n) mod 15.
a(15*n+7+k) = a(15*n+8-k) for k <= 15*n+7.
a(15*n+k) = a(15*n-k) for k <= 15*n.
a(n+15) = a(n). (End)
From R. J. Mathar, Mar 14 2011: (Start)
a(n) = a(n-15).
G.f.: -x*(1+x) *(x^12+3*x^11+6*x^10-5*x^9+15*x^8-9*x^7+13*x^6-9*x^5+15*x^4-5*x^3+6*x^2+3*x+1) / ( (x-1) *(1+x^4+x^3+x^2+x) *(1+x+x^2) *(1-x+x^3-x^4+x^5-x^7+x^8) ). (End)
G.f.: (x^14 +4*x^13 +9*x^12 +x^11 +10*x^10 +6*x^9 +4*x^8 +4*x^7 +6*x^6 +10*x^5 +x^4 +9*x^3 +4*x^2 +x)/(-x^15 +1). - Colin Barker, Aug 14 2012

A010382 Squares mod 20.

Original entry on oeis.org

0, 1, 4, 5, 9, 16
Offset: 1

Views

Author

Keywords

Comments

Range of A070442. - Reinhard Zumkeller, Apr 24 2009

Crossrefs

Row 20 of A096008.
Cf. A028733.

Programs

  • Mathematica
    Union[PowerMod[Range[20], 2, 20]] (* Alonso del Arte, Dec 20 2019 *)
  • Sage
    [quadratic_residues(20)] # Zerinvary Lajos, May 24 2009
    
  • Scala
    (1 to 20).map(n => (n * n) % 20).toSet.toSeq.sorted // Alonso del Arte, Dec 20 2019

A010421 Squares mod 60.

Original entry on oeis.org

0, 1, 4, 9, 16, 21, 24, 25, 36, 40, 45, 49
Offset: 1

Views

Author

Keywords

Comments

Range of A159852. - Reinhard Zumkeller, Apr 24 2009

Crossrefs

Row 60 of A096008.

Programs

  • Magma
    [n: n in [0..59] | IsSquare(R! n) where R:= ResidueClassRing(60)]; // Vincenzo Librandi, Jan 05 2020
  • Mathematica
    Union[PowerMod[Range[60], 2, 60]] (* Alonso del Arte, Jan 03 2020 *)
  • Sage
    [quadratic_residues(60)] # Zerinvary Lajos, May 24 2009
    
  • Scala
    (1 to 60).map(n => n * n % 60).toSet.toSeq.sorted // Alonso del Arte, Jan 03 2020
    

A010462 Squares mod 30.

Original entry on oeis.org

0, 1, 4, 6, 9, 10, 15, 16, 19, 21, 24, 25
Offset: 1

Views

Author

Keywords

Comments

Range of A070452; a(k) + a(13-k) = 25, 1 <= k <= 12. - Reinhard Zumkeller, Apr 24 2009

Examples

			3^2 = 9, so 9 is in the sequence.
10^2 and 20^2 are both congruent to 10 mod 30, so 10 is in the sequence.
There are no solutions to x^2 = 11 mod 30, so 11 is not in the sequence.
		

Crossrefs

Row 30 of A096008.
Cf. A028743.

Programs

Showing 1-4 of 4 results.