cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A248269 Egyptian fraction representation of sqrt(43) (A010497) using a greedy function.

Original entry on oeis.org

6, 2, 18, 532, 305858, 137859230710, 22012211318177566410441, 1147928569154887244380386940705198857524244457, 54505440157936785019731226309482186897275025107764309863984976644953861019275801793173245974
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 43]]

A010134 Continued fraction for sqrt(43).

Original entry on oeis.org

6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3
Offset: 0

Views

Author

Keywords

Examples

			6.557438524302000652344109997... = 6 + 1/(1 + 1/(1 + 1/(3 + 1/(1 + ...)))) - _Harry J. Smith_, Jun 05 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010497 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[43],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 16000); x=contfrac(sqrt(43)); for (n=0, 20000, write("b010134.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 05 2009
    
  • PARI
    Vec((6*x^10+x^9+x^8+3*x^7+x^6+5*x^5+x^4+3*x^3+x^2+x+6)/(-x^10+1) + O(x^100)) \\ Colin Barker, Nov 01 2013

Formula

From Colin Barker, Nov 01 2013: (Start)
G.f.: (6*x^10+x^9+x^8+3*x^7+x^6+5*x^5+x^4+3*x^3+x^2+x+6)/(1-x^10).
a(n) = a(n-10) for n>10. (End)

A228932 Optimal ascending continued fraction expansion of sqrt(43) - 6.

Original entry on oeis.org

2, 9, 30, 60, 122, -878, 11429, 35241, -177141, 709582, -3123032, -1157723745, 3237738813, -16178936725, 33395053634, -71863018424, -153349368674, -386763022623, -8021033029400, 16314606875900, 52522689388692
Offset: 1

Views

Author

Giovanni Artico, Sep 10 2013

Keywords

Comments

See A228929 for the definition of "optimal ascending continued fraction".
In A228931 it is shown that many numbers of the type sqrt(x) seem to present in their expansion a recurrence relation a(n) = a(n-1)^2 - 2 between the terms, starting from some point onward; 43 is the first natural number whose terms don't respect this relation.
The numbers in range 1 .. 200 that exhibit this behavior are 43, 44, 46, 53, 58, 61, 67, 73, 76, 85, 86, 89, 91, 94, 97, 103, 106, 108, 109, 113, 115, 116, 118, 125, 127, 129, 131, 134, 137, 139, 149, 151, 153, 154, 157, 159, 160, 161, 163, 166, 172, 173, 176, 177, 179, 181, 184, 186, 190, 191, 193, 199.
Nevertheless, the expansions of 3*sqrt(43), 9*sqrt(43), and sqrt(43)/5 satisfy the recurrence relation.

Examples

			sqrt(43) = 6 + 1/2*(1 + 1/9*(1 + 1/30*(1 + 1/60*(1 + 1/122*(1 - 1/878*(1 + ...)))))).
		

References

Crossrefs

Programs

  • Maple
    ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
    # List the first 8 terms of the expansion of sqrt(43)-6
    ArticoExp(sqrt(43),20)
  • Mathematica
    ArticoExp[x_, n_] := Round[1/#] & /@ NestList[Round[1/Abs[#]]*Abs[#] - 1 &, FractionalPart[x], n]; Block[{$MaxExtraPrecision = 50000},
    ArticoExp[Sqrt[43] - 6, 20]] (* G. C. Greubel, Dec 26 2016 *)

A041072 Numerators of continued fraction convergents to sqrt(43).

Original entry on oeis.org

6, 7, 13, 46, 59, 341, 400, 1541, 1941, 3482, 43725, 47207, 90932, 320003, 410935, 2374678, 2785613, 10731517, 13517130, 24248647, 304500894, 328749541, 633250435, 2228500846, 2861751281, 16537257251
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[43], 30]] (* Vincenzo Librandi, Oct 29 2013 *)

Formula

G.f.: -(x^19 -6*x^18 +7*x^17 -13*x^16 +46*x^15 -59*x^14 +341*x^13 -400*x^12 +1541*x^11 -1941*x^10 -3482*x^9 -1941*x^8 -1541*x^7 -400*x^6 -341*x^5 -59*x^4 -46*x^3 -13*x^2 -7*x -6) / (x^20 -6964*x^10 +1). - Colin Barker, Nov 04 2013

A041073 Denominators of continued fraction convergents to sqrt(43).

Original entry on oeis.org

1, 1, 2, 7, 9, 52, 61, 235, 296, 531, 6668, 7199, 13867, 48800, 62667, 362135, 424802, 1636541, 2061343, 3697884, 46435951, 50133835, 96569786, 339843193, 436412979, 2521908088, 2958321067, 11396871289, 14355192356, 25752063645, 323379956096, 349132019741
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 1, 2, 7, 9, 52, 61, 235, 296, 531, 6668, 7199, 13867, 48800, 62667, 362135, 424802, 1636541, 2061343, 3697884]; [n le 20 select I[n] else 6964*Self(n-10)-Self(n-20): n in [1..40]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Denominator[Convergents[Sqrt[43], 40]] (* Vincenzo Librandi, Dec 10 2013 *)

Formula

G.f.: -(x^18 -x^17 +2*x^16 -7*x^15 +9*x^14 -52*x^13 +61*x^12 -235*x^11 +296*x^10 -531*x^9 -296*x^8 -235*x^7 -61*x^6 -52*x^5 -9*x^4 -7*x^3 -2*x^2 -x -1) / (x^20 -6964*x^10 +1). - Colin Barker, Nov 12 2013
a(n) = 6964*a(n-10) - a(n-20). - Vincenzo Librandi, Dec 10 2013

Extensions

More terms from Colin Barker, Nov 12 2013

A177159 Decimal expansion of sqrt(4171).

Original entry on oeis.org

6, 4, 5, 8, 3, 2, 7, 9, 5, 6, 9, 8, 7, 0, 0, 9, 4, 9, 7, 6, 5, 0, 3, 7, 0, 8, 1, 1, 5, 1, 5, 0, 3, 8, 7, 2, 7, 4, 2, 5, 0, 0, 4, 2, 3, 1, 4, 6, 2, 6, 2, 4, 3, 2, 5, 8, 5, 5, 2, 7, 2, 9, 9, 6, 1, 0, 6, 8, 9, 8, 2, 7, 6, 4, 7, 2, 0, 3, 9, 1, 5, 5, 0, 7, 6, 3, 8, 2, 6, 6, 1, 4, 2, 0, 9, 7, 0, 2, 7, 8, 4, 5, 4, 2, 1
Offset: 2

Views

Author

Klaus Brockhaus, May 03 2010

Keywords

Comments

Continued fraction expansion of sqrt(4171) is 64 followed by (repeat 1, 1, 2, 1, 1, 128).
sqrt(4171) = sqrt(43)*sqrt(97).

Examples

			sqrt(4171) = 64.58327956987009497650...
		

Crossrefs

Cf. A010497 (decimal expansion of sqrt(43)), A010548 (decimal expansion of sqrt(97)), A177158 (decimal expansion of (103+2*sqrt(4171))/162).
Showing 1-6 of 6 results.