A010710 Period 2: repeat [4,5].
4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4
Offset: 0
Links
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
- Index entries for linear recurrences with constant coefficients, signature (0,1).
Crossrefs
Cf. A176215.
Programs
-
Mathematica
From Stefano Spezia, Sep 07 2018: (Start) a[n_]:=-(1/2)*(-1)^n + 9/2; Array[a, 50, {0, 49}] a[n_]:=Floor[9*(n+1)/2] - Floor[9*n/2]; Array[a, 50, {0, 49}] a[n_]:= 4 + Mod[n,2]; Array[a, 50, {0, 49}] LinearRecurrence[{0, 1}, {4, 5}, 50] CoefficientList[Series[(4+5*x)/(1-x^2), {x, 0, 50}], x] (End)
-
PARI
a(n)=4+n%2 \\ Jaume Oliver Lafont, Mar 20 2009
-
PARI
a(n) = my(v=[4, 5]); v[n%2+1] \\ Felix Fröhlich, Sep 06 2018
-
PARI
Vec((4+5*x)/(1-x^2) + O(x^100)) \\ Felix Fröhlich, Sep 06 2018
Formula
G.f.: (4+5*x)/(1-x^2). - Jaume Oliver Lafont, Mar 20 2009
a(n) = floor(9*(n+1)/2) - floor(9*n/2). - Hailey R. Olafson, Jul 17 2014
a(n) = 4 + (n mod 2). - Kritsada Moomuang, Sep 06 2018
From Wesley Ivan Hurt, Apr 20 2024: (Start)
a(n+2) = a(n).
a(n+1) = a(n) + (-1)^n.
a(n) = (9-(-1)^n)/2. (End)
Comments