cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A239614 a(n) = A239611(n) / A079458(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 8, 2, 6, 2, 8, 4, 4, 2, 12, 3, 4, 4, 8, 2, 8, 2, 10, 4, 4, 4, 12, 2, 4, 4, 12, 2, 8, 2, 8, 6, 4, 2, 16, 3, 6, 4, 8, 2, 8, 4, 12, 4, 4, 2, 16, 2, 4, 6, 12, 4, 8, 2, 8, 4, 8, 2, 18, 2, 4, 6, 8, 4, 8, 2, 16, 5, 4, 2, 16, 4, 4, 4, 12, 2, 12, 4, 8, 4, 4, 4, 20, 2, 6, 6, 12, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative because both A239611 and A079458 are. - Andrew Howroyd, Aug 07 2018

Crossrefs

Programs

  • Mathematica
    a239611[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}];
    a079458[n_] := Product[{p, e} = pe; Which[p==2, 2^(2e-1), Mod[p, 4]==3, (p^2-1)p^(2e-2), Mod[p, 4]==1, (p-1)^2 p^(2e-2)], {pe, FactorInteger[n]}];
    a[1] = 1; a[n_] := a239611[n]/a079458[n];
    Array[a, 105] (* Jean-François Alcover, Dec 04 2018 *)

Formula

Conjectures from Ridouane Oudra, Jul 22 2024: (Start)
a(n) = A010710(n)*tau(n) - 2*tau(2n) ;
a(2*n) = 2*tau(n) ;
a(2*n+1) = tau(2*n+1). (End)

Extensions

More terms from Antti Karttunen, Sep 23 2017

A063289 Dimension of the space of weight n cuspidal newforms for Gamma_1( 16 ).

Original entry on oeis.org

-1, 2, 7, 11, 16, 20, 25, 29, 34, 38, 43, 47, 52, 56, 61, 65, 70, 74, 79, 83, 88, 92, 97, 101, 106, 110, 115, 119, 124, 128, 133, 137, 142, 146, 151, 155, 160, 164, 169, 173, 178, 182, 187, 191, 196, 200, 205, 209, 214, 218, 223, 227, 232, 236
Offset: 2

Views

Author

N. J. A. Sloane, Jul 14 2001

Keywords

Comments

It appears that for n > 2 a(n) = floor((9n-22)/2). - Gary Detlefs, Mar 02 2010

Crossrefs

Cf. A063232, A063233, A017185 (bisection), A130880, A332438.

Programs

  • Mathematica
    Join[{-1}, Table[9*n/2 + (-1)^n/4 - 45/4, {n, 3, 60}]] (* Amiram Eldar, Jan 12 2024 *)

Formula

a(n) = 9*n/2 + (-1)^n/4 - 45/4 for n >= 3, with first differences in A010710. - R. J. Mathar, Dec 06 2010
From M. F. Hasler, Mar 05 2012: (Start)
G.f.: x^2*(-1 + 3*x + 6*x^2 + x^3)/(1 - x - x^2 + x^3).
a(n+2) = a(n)+9 (n>2), a(2n+1) = a(2n)+4 (n>1), a(2n) = a(2n-1)+5 (n>1). (End)
Sum_{n>=3} (-1)^(n+1)/a(n) = cot(2*Pi/9)*Pi/9. - Amiram Eldar, Jan 12 2024
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=3} (1 - (-1)^n/a(n)) = 2*sin(Pi/18) + 1 (= A130880 + 1).
Product_{n>=3} (1 + (-1)^n/a(n)) = (1/2) * sec(Pi/9) (= A332438 - 3). (End)

A321483 a(n) = 7*2^n + (-1)^n.

Original entry on oeis.org

8, 13, 29, 55, 113, 223, 449, 895, 1793, 3583, 7169, 14335, 28673, 57343, 114689, 229375, 458753, 917503, 1835009, 3670015, 7340033, 14680063, 29360129, 58720255, 117440513, 234881023, 469762049, 939524095, 1879048193, 3758096383, 7516192769, 15032385535
Offset: 0

Views

Author

Paul Curtz, Nov 11 2018

Keywords

Comments

Difference table:
8, 13, 29, 55, 113, 223, 449, ...
5, 16, 26, 58, 110, 226, 446, 898, ...
11, 10, 32, 52, 116, 220, 452, 892, 1796, ...
-1, 22, 20, 64, 104, 232, 440, 904, 1784, 3592, ...
-2, 44, 40, 128, 208, 464, 880, 1808, 3568, 7184, ...
etc.
Every diagonal is a sequence of the form k*2^m.
a(n) is divisible by
. 5 if n is a term of A004767,
. 11 if n is a term of A016885,
. 13 if n is a term of A017533.

Crossrefs

Programs

  • Mathematica
    a[n_] := 7*2^n + (-1)^n ; Array[a, 32, 0] (* Amiram Eldar, Nov 12 2018 *)
    CoefficientList[Series[E^-x + 7 E^(2 x), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 12 2018 *)
    LinearRecurrence[{1,2},{8,13},40] (* Harvey P. Dale, Mar 18 2022 *)
  • PARI
    Vec((8 + 5*x) / ((1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Nov 11 2018

Formula

O.g.f.: (8 + 5*x) / ((1 + x)*(1 - 2*x)). - Colin Barker, Nov 11 2018
E.g.f.: exp(-x) + 7*exp(2*x). - Stefano Spezia, Nov 12 2018
a(n) = a(n-1) + 2*a(n-2).
a(n) = 2*a(n-1) + 3*(-1)^n for n>0, a(0)=8.
a(2*k) = 7*4^k + 1, a(2*k+1) = 14*4^k - 1.
a(n) = A014551(n) + A014551(n-1) + A014551(n-2).
a(n) = 2^(n+3) - 3*A001045(n).
a(n) mod 9 = A070366(n+3).
a(n) + a(n+1) = 21*2^n.

Extensions

Two terms corrected, and more terms added by Colin Barker, Nov 11 2018

A176215 Decimal expansion of (10+2*sqrt(30))/5.

Original entry on oeis.org

4, 1, 9, 0, 8, 9, 0, 2, 3, 0, 0, 2, 0, 6, 6, 4, 4, 5, 3, 8, 2, 7, 8, 7, 9, 1, 3, 1, 2, 0, 3, 2, 0, 8, 5, 3, 5, 8, 1, 0, 9, 7, 8, 7, 7, 9, 9, 9, 1, 9, 3, 3, 0, 1, 6, 9, 0, 7, 5, 7, 7, 7, 9, 8, 9, 2, 9, 9, 7, 3, 1, 0, 8, 4, 9, 0, 8, 9, 0, 9, 3, 5, 2, 0, 3, 4, 3, 3, 7, 4, 4, 6, 5, 5, 4, 8, 2, 5, 0, 3, 0, 5, 8, 9, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 12 2010

Keywords

Comments

Continued fraction expansion of (10+2*sqrt(30))/5 is A010710.

Examples

			(10+2*sqrt(30))/5 = 4.19089023002066445382...
		

Crossrefs

Cf. A010485 (decimal expansion of sqrt(30)), A010710 (repeat 4, 5).

Programs

  • Mathematica
    RealDigits[(10+2Sqrt[30])/5,10,120][[1]] (* Harvey P. Dale, Nov 28 2011 *)

A176662 a(0)=2, a(1)=7, and a(n) = (3*n+1)*2^(n-1) if n > 1.

Original entry on oeis.org

2, 7, 14, 40, 104, 256, 608, 1408, 3200, 7168, 15872, 34816, 75776, 163840, 352256, 753664, 1605632, 3407872, 7208960, 15204352, 31981568, 67108864, 140509184, 293601280, 612368384, 1275068416, 2650800128, 5502926848, 11408506880, 23622320128, 48855252992
Offset: 0

Views

Author

Paul Curtz, Apr 23 2010

Keywords

Comments

The sequence appears on the main diagonal of the array defined by A123167 in the first row and successive differences in followup rows:
2, 3, 10, 7, 18, 11, 26, 15, 34, 19, ... A123167
1, 7, -3, 11, -7, 15, -11, 19, -15, 23, ... first diff
6, -10, 14, -18, 22 -26, 30, -34, 38, ... second diff
-16, 24, -32, 40, -48, 56, -64, 72, -80, ... third diff

Programs

  • Mathematica
    LinearRecurrence[{4,-4},{2,7,14,40},40] (* or *) Join[{2,7},Table[ (3n+1) 2^(n-1),{n,2,40}]] (* Harvey P. Dale, Oct 05 2019 *)

Formula

a(n) mod 9 = A010710(n-1), n > 2.
a(2n) + a(2n+1) = 9, 54, 360, 2016, ...
a(n) - 2*a(n-1) = 12*A131577(n-2), n > 1.
a(n) = 4*a(n-1) - 4*a(n-2), n > 3.
G.f.: (-6*x^2+12*x^3+2-x)/(1-2*x)^2.

Extensions

Edited by R. J. Mathar, Jun 30 2010

A184418 Convolution square of A040001.

Original entry on oeis.org

1, 2, 5, 6, 10, 10, 15, 14, 20, 18, 25, 22, 30, 26, 35, 30, 40, 34, 45, 38, 50, 42, 55, 46, 60, 50, 65, 54, 70, 58, 75, 62, 80, 66, 85, 70, 90, 74, 95, 78, 100, 82, 105, 86, 110, 90, 115, 94, 120, 98, 125, 102, 130, 106, 135, 110, 140, 114, 145, 118, 150, 122, 155, 126
Offset: 0

Views

Author

Michael Somos, Feb 14 2011

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 6*x^3 + 10*x^4 + 10*x^5 + 15*x^6 + 14*x^7 + 20*x^8 + ...
		

Programs

  • Magma
    I:=[2,5,6,10]; [1] cat [n le 4 select I[n] else 2*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 14 2018
  • Mathematica
    LinearRecurrence[{0,2,0,-1},{1,2,5,6,10},80] (* Harvey P. Dale, Jul 03 2017 *)
  • PARI
    {a(n) = (n==0) + n * ([5/2, 2] [n%2 + 1])};
    
  • PARI
    {a(n) = if( n==0, 1, sign(n) * polcoeff( (1 + x + x^2)^2 / (1 - x^2)^2 + x * O(x^abs(n)), abs(n)))};
    

Formula

G.f.: (1 + x + x^2)^2 / (1 - x^2)^2 = 1 + x * (x + 2) * (2*x + 1) / (1 - x^2)^2. a(-n) = -a(n) except a(0) = 2.
Euler transform of length 3 sequence [2, 2, -2].
a(n) = 2 * b(n) where b() is multiplicative with b(2^e) = 5 * 2^(e-2) if e>0, b(p^e) = p^e if p>2.
a(2*n + 1) = 4*n + 2, a(2*n) = 5*n except a(0) = 2.
a(n) = (9+(-1)^n)*n/4 = (n/2)*A010710(n+1) for n>0. - Bruno Berselli, Mar 24 2011

A280173 a(0) = 1, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [5, -4].

Original entry on oeis.org

1, 7, 10, 25, 46, 97, 190, 385, 766, 1537, 3070, 6145, 12286, 24577, 49150, 98305, 196606, 393217, 786430, 1572865, 3145726, 6291457, 12582910, 25165825, 50331646, 100663297, 201326590, 402653185, 805306366, 1610612737, 3221225470, 6442450945, 12884901886
Offset: 0

Views

Author

Paul Curtz, Dec 28 2016

Keywords

Comments

a(n) mod 9 = period 2: repeat [1, 7].
The last digit from 7 is of period 4: repeat [7, 0, 5, 6].
The bisection A096045 = 1, 10, 46, ... is based on Bernoulli numbers.
a(n) is a companion to A051049(n).
With an initial 0, A051049(n) is an autosequence of the first kind.
With an initial 2, this sequence is an autosequence of the second kind.
See the reference.
Difference table:
1, 7, 10, 25, 46, 97, ... = this sequence.
6, 3, 15, 21, 51, 93, ... = 3*A014551(n)
-3, 12, 6, 30, 42, 102, ... = -3 followed by 6*A014551(n).
The main diagonal of the difference table gives A003945: 1, 3, 6, 12, 24, ...

Examples

			a(0) = 1, a(1) = 2*1 + 5 = 7, a(2) = 2*7 - 4 = 10, a(3) = 2*10 + 5 = 25.
		

Crossrefs

Programs

  • Maple
    seq(3*2^n-(-1)^n*(1+irem(n+1,2)),n=0..32); # Peter Luschny, Dec 29 2016
  • Mathematica
    LinearRecurrence[{2,1,-2},{1,7,10},50] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    Vec((1 + 5*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 28 2016

Formula

a(2n) = 3*4^n - 2, a(2n+1) = 6*4^n + 1.
a(n+2) = a(n) + 9*2^n, a(0) = 1, a(1) = 7.
a(n) = 2*A051049(n+1) - A051049(n).
From Colin Barker, Dec 28 2016: (Start)
a(n) = 3*2^n - 2 for n even.
a(n) = 3*2^n + 1 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2.
G.f.: (1 + 5*x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
(End)

A176319 Decimal expansion of (5+sqrt(30))/2.

Original entry on oeis.org

5, 2, 3, 8, 6, 1, 2, 7, 8, 7, 5, 2, 5, 8, 3, 0, 5, 6, 7, 2, 8, 4, 8, 4, 8, 9, 1, 4, 0, 0, 4, 0, 1, 0, 6, 6, 9, 7, 6, 3, 7, 2, 3, 4, 7, 4, 9, 8, 9, 9, 1, 6, 2, 7, 1, 1, 3, 4, 4, 7, 2, 2, 4, 8, 6, 6, 2, 4, 6, 6, 3, 8, 5, 6, 1, 3, 6, 1, 3, 6, 6, 9, 0, 0, 4, 2, 9, 2, 1, 8, 0, 8, 1, 9, 3, 5, 3, 1, 2, 8, 8, 2, 3, 6, 3
Offset: 1

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of (5+sqrt(30))/2 is A010710 preceded by 5.

Examples

			(5+sqrt(30))/2 = 5.23861278752583056728...
		

Crossrefs

Cf. A010485 (decimal expansion of sqrt(30)), A010710 (repeat 4, 5).

Programs

  • Magma
    SetDefaultRealField(RealField(120)); (5 + Sqrt(30))/2; // G. C. Greubel, Nov 26 2019
    
  • Maple
    evalf( (5+sqrt(30))/2, 120); # G. C. Greubel, Nov 26 2019
  • Mathematica
    RealDigits[(5+Sqrt[30])/2,10,120][[1]]  (* Harvey P. Dale, Apr 24 2011 *)
  • PARI
    default(realprecision, 120); (5+sqrt(30))/2 \\ G. C. Greubel, Nov 26 2019
    
  • Sage
    numerical_approx((5+sqrt(30))/2, digits=120) # G. C. Greubel, Nov 26 2019

A207260 Triangle read by rows: T(n,k) = k^2 + (1-(-1)^(n-k))/2.

Original entry on oeis.org

0, 1, 1, 0, 2, 4, 1, 1, 5, 9, 0, 2, 4, 10, 16, 1, 1, 5, 9, 17, 25, 0, 2, 4, 10, 16, 26, 36, 1, 1, 5, 9, 17, 25, 37, 49, 0, 2, 4, 10, 16, 26, 36, 50, 64, 1, 1, 5, 9, 17, 25, 37, 49, 65, 81, 0, 2, 4, 10, 16, 26, 36, 50, 64, 82, 100, 1, 1, 5, 9, 17, 25, 37, 49, 65, 81, 101, 121
Offset: 0

Views

Author

Philippe Deléham, Feb 16 2012

Keywords

Comments

Row sums are A171218(n).

Examples

			Triangle begins:
  0;
  1, 1;
  0, 2, 4;
  1, 1, 5,  9;
  0, 2, 4, 10, 16;
  1, 1, 5,  9, 17, 25;
  0, 2, 4, 10, 16, 26, 36;
  1, 1, 5,  9, 17, 25, 37, 49;
  0, 2, 4, 10, 16, 26, 36, 50, 64;
  1, 1, 5,  9, 17, 25, 37, 49, 65, 81;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[ k^2 + (1-(-1)^(n-k))/2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 09 2024
  • Mathematica
    Table[k^2 + (1-(-1)^(n-k))/2, {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Nov 13 2024 *)

Formula

T(n+k, n) = A002522(n) if k is odd.
T(n+k, n) = n^2 = A000290(n) if k is even.
T(2*n, n) = A137928(n), n>0.
T(2*n+1, n+1) = A080335(n).
T(n,0) = A000035(n).
T(n+1,1) = A000034(n).
T(n+2,2) = A010710(n).
T(n+3,3) = A010735(n).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A007590(n), A000035(n), A171218(n)
for x = -1, 0, 1 respectively.
G.f.: x*(1 + y - x*y + x*(1 + 2*x)*y^2)/((1 - x^2)*(1 - x*y)^3). - Stefano Spezia, Nov 12 2024

A021026 Decimal expansion of 1/22.

Original entry on oeis.org

0, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010710. [From Jaume Oliver Lafont, Mar 20 2009]

Programs

  • Mathematica
    Join[{0},RealDigits[1/22,10,120][[1]]] (* or *) CoefficientList[ Series[ x (4+5x)/(1-x^2),{x,0,120}],x] (* Harvey P. Dale, Apr 29 2011 *)

Formula

G.f.: x*(4+5*x)/(1-x^2). [From Jaume Oliver Lafont, Mar 20 2009]
Showing 1-10 of 10 results.