A010845 a(n) = 3*n*a(n-1) + 1, a(0) = 1.
1, 4, 25, 226, 2713, 40696, 732529, 15383110, 369194641, 9968255308, 299047659241, 9868572754954, 355268619178345, 13855476147955456, 581929998214129153, 26186849919635811886, 1256968796142518970529
Offset: 0
Examples
1 + 4*x + 25*x^2 + 226*x^3 + 2713*x^4 + 40696*x^5 + 732529*x^6 + ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
Programs
-
Mathematica
Table[ Gamma[ n, 1/3 ]*Exp[ 1/3 ]*3^(n-1), {n, 1, 24} ] a[ n_] := If[ n<0, 0, Floor[ n! E^(1/3) 3^n ]] (* Michael Somos, Sep 04 2013 *) Range[0, 20]! CoefficientList[Series[Exp[x]/(1 - 3 x), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 17 2014 *)
-
PARI
{a(n) = if( n<0, 0, n! * sum(k=0, n, 3^(n-k) / k!))} /* Michael Somos, Sep 04 2013 */
Formula
E.g.f.: exp(x)/(1-3*x).
a(n) = floor( n!*e^(1/3)*3^n ) = n! * (Sum_{k=0..n} 3^(n-k) / k!) = n! * (e^(1/3) * 3^n - Sum_{k>n} 3^(n-k) / k!). - Michael Somos, Mar 26 1999
a(n) = Sum_{k=0..n} P(n, k)*3^k. - Ross La Haye, Aug 29 2005
Binomial transform of A032031. - Carl Najafi, Sep 11 2011
Conjecture: a(n) +(-3*n-1)*a(n-1) +3*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 16 2014
a(n) = hypergeometric_U(1,n+2,1/3)/3. - Peter Luschny, Nov 26 2014
From Peter Bala, Mar 01 2017: (Start)
a(n) = Integral_{x >= 0} (3*x + 1)^n*exp(-x) dx.
The e.g.f. y = exp(x)/(1 - 3*x) satisfies the differential equation (1 - 3*x)*y' = (4 - 3*x)*y. Mathar's recurrence above follows easily from this.
The sequence b(n) := (3^n)*n! also satisfies Mathar's recurrence with b(0) = 1, b(1) = 3. This leads to the continued fraction representation a(n) = (3^n)*n!*( 1 + 1/(3 - 3/(7 - 6/(10 - ... - (3*n - 3)/(3*n + 1) )))) for n >= 2. Taking the limit as n -> oo gives the continued fraction representation exp(1/3) = 1 + 1/(3 - 3/(7 - 6/(10 - ... - (3*n - 3)/((3*n + 1) - ... )))). Cf. A010844. (End)
Extensions
Better description and formulas from Michael Somos
More terms from James Sellers, Jul 04 2000
Comments