A010966 a(n) = binomial(n,13).
1, 14, 105, 560, 2380, 8568, 27132, 77520, 203490, 497420, 1144066, 2496144, 5200300, 10400600, 20058300, 37442160, 67863915, 119759850, 206253075, 347373600, 573166440, 927983760, 1476337800, 2310789600, 3562467300, 5414950296, 8122425444, 12033222880
Offset: 13
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 13..1000
- Milan Janjic, Two Enumerative Functions University of Banja Luka (Bosnia and Herzegovina, 2017).
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
Programs
-
Magma
[ Binomial(n,13): n in [13..50]]; // Vincenzo Librandi, Mar 26 2011
-
Maple
seq(binomial(n,13),n=13..36); # Zerinvary Lajos, Aug 06 2008
-
Mathematica
Table[Binomial[n,13],{n,13,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
-
PARI
for(n=13, 50, print1(binomial(n,13), ", ")) \\ G. C. Greubel, Aug 31 2017
Formula
a(n) = -A110555(n+1,13). - Reinhard Zumkeller, Jul 27 2005
a(n+12) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)/13!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
G.f.: x^13/(1-x)^14. - Zerinvary Lajos, Aug 06 2008
a(n) = n/(n-13) * a(n-1), n > 13. - Vincenzo Librandi, Mar 26 2011
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=13} 1/a(n) = 13/12.
Extensions
Some formulas for different offsets rewritten by R. J. Mathar, Jul 07 2009
Comments