A010967 a(n) = binomial coefficient C(n,14).
1, 15, 120, 680, 3060, 11628, 38760, 116280, 319770, 817190, 1961256, 4457400, 9657700, 20058300, 40116600, 77558760, 145422675, 265182525, 471435600, 818809200, 1391975640, 2319959400, 3796297200, 6107086800, 9669554100, 15084504396, 23206929840, 35240152720
Offset: 14
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 14..1000
- Milan Janjic, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (15, -105, 455, -1365, 3003, -5005, 6435, -6435, 5005, -3003, 1365, -455, 105, -15, 1).
Programs
-
Magma
[ Binomial(n,14): n in [14..60]]; // Vincenzo Librandi, Mar 26 2011
-
Maple
seq(binomial(n,14),n=14..37); # Zerinvary Lajos, Aug 06 2008
-
Mathematica
Table[Binomial[n,14],{n,14,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
-
PARI
for(n=14, 50, print1(binomial(n,14), ", ")) \\ G. C. Greubel, Aug 31 2017
Formula
a(n) = A110555(n+1,14). - Reinhard Zumkeller, Jul 27 2005
a(n+13) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)(n+13)/14!. - Artur Jasinski, Dec 02 2007, R. J. Mathar, Jul 07 2009
G.f.: x^14/(1-x)^15. - Zerinvary Lajos, Aug 06 2008, R. J. Mathar, Jul 07 2009
a(n) = n/(n-14) * a(n-1), n > 14. - Vincenzo Librandi, Mar 26 2011
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=14} 1/a(n) = 14/13.
Extensions
Some formulas rewritten for the correct offset by R. J. Mathar, Jul 07 2009
Comments