A010969 a(n) = binomial(n,16).
1, 17, 153, 969, 4845, 20349, 74613, 245157, 735471, 2042975, 5311735, 13037895, 30421755, 67863915, 145422675, 300540195, 601080390, 1166803110, 2203961430, 4059928950, 7307872110, 12875774670, 22239974430, 37711260990, 62852101650, 103077446706, 166509721602
Offset: 16
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 16..1000
- Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- Milan Janjic, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
Programs
-
Magma
[ Binomial(n,16): n in [16..80]]; // Vincenzo Librandi, Mar 26 2011
-
Maple
seq(binomial(n,16),n=16..37); # Zerinvary Lajos, Aug 06 2008
-
Mathematica
Table[Binomial[n,16],{n,16,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
-
PARI
for(n=16, 50, print1(binomial(n,16), ", ")) \\ G. C. Greubel, Aug 31 2017
Formula
a(n+15) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)(n+13)(n+14)(n+15)/16!. - Artur Jasinski, Dec 02 2007
G.f.: x^16/(1-x)^17. - Zerinvary Lajos, Aug 06 2008; R. J. Mathar, Jul 07 2009
a(n) = n/(n-16) * a(n-1), n > 16. - Vincenzo Librandi, Mar 26 2011
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=16} 1/a(n) = 16/15.
Extensions
Some formulas adjusted to the offset by R. J. Mathar, Jul 07 2009
Comments