A011558 Expansion of (x + x^3)/(1 + x + ... + x^4) mod 2.
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0
Offset: 0
Examples
G.f. = x + x^2 + x^3 + x^4 + x^6 + x^7 + x^8 + x^9 + x^11 + x^12 + ...
References
- Arthur Gill, Linear Sequential Circuits, McGraw-Hill, 1966, Eq. (17-10).
- K. Mahler, p-adic numbers and their functions, 2nd ed., Cambridge University press, 1981.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- Michael Gilleland, Some Self-Similar Integer Sequences
- R. Gold, Characteristic linear sequences and their coset functions, J. SIAM Applied. Math., 14 (1966), 980-985.
- Index entries for characteristic functions
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
Crossrefs
Programs
-
Maple
seq(n&^4 mod 5, n=0..50); # Gary Detlefs, Mar 20 2010
-
Mathematica
Mod[#,2]&/@CoefficientList[Series[(x+x^3)/(1+x+x^2+x^3+x^4) ,{x,0,100}], x] (* or *) Flatten[Table[{0,1,1,1,1},{30}]] (* Harvey P. Dale, May 15 2011 *) a[ n_] := Sign@Mod[ n, 5]; (* Michael Somos, May 24 2015 *)
-
PARI
a(n)=!!(n%5) \\ Charles R Greathouse IV, Sep 23 2012
-
PARI
{a(n) = n%5>0}; /* Michael Somos, May 24 2015 */
-
Scheme
(define (A011558 n) (if (zero? (modulo n 5)) 0 1)) ;; Antti Karttunen, Dec 21 2017
Formula
O.g.f.: x*(1+x+x^2+x^3)/(1-x^5). - Wolfdieter Lang, Feb 05 2009
From Reinhard Zumkeller, Nov 30 2009: (Start)
a(n) = 1 - A079998(n).
A033437(n) = Sum_{k=0..n} a(k)*(n-k). (End)
a(n) = n^4 mod 5. - Gary Detlefs, Mar 20 2010
Sum_{n>=1} a(n)/n^s = L(s,chi) = (1-1/5^s)*Riemann_zeta(s), s > 1. - R. J. Mathar, Jul 31 2010
For the general case. The characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = sgn(n mod 5). - Wesley Ivan Hurt, Jun 30 2013
Euler transform of length 5 sequence [ 1, 0, 0, -1, 1]. - Michael Somos, May 24 2015
Moebius transform is length 5 sequence [ 1, 0, 0, 0, -1]. - Michael Somos, May 24 2015
G.f.: f(x) - f(x^5) where f(x) := x / (1 - x). - Michael Somos, May 24 2015
Extensions
More terms from Antti Karttunen, Dec 21 2017
Comments