cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011756 a(n) = prime(n*(n+1)/2).

Original entry on oeis.org

2, 5, 13, 29, 47, 73, 107, 151, 197, 257, 317, 397, 467, 571, 659, 769, 883, 1019, 1151, 1291, 1453, 1607, 1783, 1987, 2153, 2371, 2593, 2791, 3037, 3307, 3541, 3797, 4073, 4357, 4657, 4973, 5303, 5641, 5939, 6301, 6679, 7019, 7477
Offset: 1

Views

Author

Keywords

Comments

There are n distinct successive primes p (not appearing in the sequence) such that a(n) < p < a(n+1). - David James Sycamore, Jul 22 2018

Crossrefs

Primes in leading diagonal of triangle in A078721.
Cf. A195678.
Cf. A000720.

Programs

  • Haskell
    a011756 n = a011756_list !! (n-1)
    a011756_list = map a000040 $ tail a000217_list
    -- Reinhard Zumkeller, Sep 23 2011
    
  • Magma
    [NthPrime(n*(n+1) div 2): n in [1..100] ]; // Vincenzo Librandi, Apr 11 2011
    
  • Maple
    seq(ithprime(n*(n+1)/2),n=1..50); # Muniru A Asiru, Jul 22 2018
  • Mathematica
    Prime[#]&/@Accumulate[Range[50]] (* Harvey P. Dale, Mar 23 2015 *)
  • PARI
    a(n) = prime(n*(n+1)/2); \\ Michel Marcus, Jul 22 2018

Formula

a(n) is asymptotic to (n*(n+1)/2) * log(n*(n+1)/2) = (n*(n+1)/2) * (log(n)+log(n+1)-log(2)) ~ (n^2 + n)*(2 log n)/2 ~ (n^2 + n)*(log n). - Jonathan Vos Post, Mar 12 2006
a(n) = A000040(A000217(n)). - David James Sycamore, Sep 03 2024