cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A011886 a(n) = floor(n*(n-1)*(n-2)/4).

Original entry on oeis.org

0, 0, 0, 1, 6, 15, 30, 52, 84, 126, 180, 247, 330, 429, 546, 682, 840, 1020, 1224, 1453, 1710, 1995, 2310, 2656, 3036, 3450, 3900, 4387, 4914, 5481, 6090, 6742, 7440, 8184, 8976, 9817, 10710, 11655, 12654, 13708, 14820, 15990, 17220, 18511, 19866, 21285
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form floor(n*(n-1)*(n-2)/m): A007531 (m=1), A135503 (m=2), A007290 (m=3), this sequence (m=4), A011887 (m=5), A000292 (m=6), A011889 (m=7), A011890 (m=8), A011891 (m=9), A011892 (m=10), A011893 (m=11), A011894 (m=12), A011895 (m=13), A011896 (m=14), A011897 (m=15), A011898 (m=16), A011899 (m=17), A011849 (m=18), A011901 (m=19), A011902 (m=20), A011903 (m=21), A011904 (m=22), A011905 (m=23), A011842 (m=24), A011907 (m=25), A011908 (m=26), A011909 (m=27), A011910 (m=28), A011911 (m=29), A011912 (m=30), A011912 (m=31), A011913 (m=32).

Programs

  • Magma
    [Floor(n*(n-1)*(n-2)/4): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012
    
  • Mathematica
    Table[Floor[(n(n-1)(n-2))/4],{n,0,50}] (* or *) LinearRecurrence[{3,-3,1,1, -3,3,-1},{0,0,0,1,6,15,30}, 50] (* Harvey P. Dale, Feb 25 2012 *)
    CoefficientList[Series[x^3*(1+3*x+2*x^3)/((1-x)^3*(1-x^4)),{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *)
  • SageMath
    [3*binomial(n,3)//2 for n in range(51)] # G. C. Greubel, Oct 06 2024

Formula

From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +3*a(n-1) -3*a(n-2) +a(n-3) +a(n-4) -3*a(n-5) +3*a(n-6) -a(n-7).
G.f.: x^3*(1+3*x+2*x^3) / ( (1-x)^4*(1+x)*(1+x^2) ). (End)
a(n) = floor(Sum_{k=0..n} n*(k+1)/2) for n >= -2. - William A. Tedeschi, Sep 10 2010

Extensions

More terms from William A. Tedeschi, Sep 10 2010

A011847 Triangle of numbers read by rows: T(n,k) = floor( C(n,k)/(k+1) ), where k=0..n-1 and n >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 7, 8, 7, 3, 1, 1, 4, 9, 14, 14, 9, 4, 1, 1, 4, 12, 21, 25, 21, 12, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 18, 41, 66, 77, 66, 41, 18, 5, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 1, 6, 26, 71, 143, 214, 245, 214, 143, 71, 26, 6, 1
Offset: 1

Views

Author

Keywords

Comments

When k+1 is a prime >= 2, then T(n,k) = floor(C(n,k)/(k+1)) is the number of aperiodic necklaces of n+1 beads of 2 colors such that k+1 of them are black and n-k of them are white. This is not true when k+1 is a composite >= 4. For more details, see the comments for sequences A032168 and A032169. - Petros Hadjicostas, Aug 27 2018
Differs from A245558 from row n = 9, k = 4 on. - M. F. Hasler, Sep 29 2018

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,   1;
  1, 2,  3,   2,   1;
  1, 3,  5,   5,   3,   1;
  1, 3,  7,   8,   7,   3,    1;
  1, 4,  9,  14,  14,   9,    4,    1;
  1, 4, 12,  21,  25,  21,   12,    4,    1;
  1, 5, 15,  30,  42,  42,   30,   15,    5,    1;
  1, 5, 18,  41,  66,  77,   66,   41,   18,    5,   1;
  1, 6, 22,  55,  99, 132,  132,   99,   55,   22,   6,   1;
  1, 6, 26,  71, 143, 214,  245,  214,  143,   71,  26,   6,   1;
  1, 7, 30,  91, 200, 333,  429,  429,  333,  200,  91,  30,   7,  1;
  1, 7, 35, 113, 273, 500,  715,  804,  715,  500, 273, 113,  35,  7, 1;
  1, 8, 40, 140, 364, 728, 1144, 1430, 1430, 1144, 728, 364, 140, 40, 8, 1;
...
More than the usual number of rows are shown in order to distinguish this triangle from A245558, from which it differs in rows 9, 11, 13, ....
From _Petros Hadjicostas_, Aug 27 2018: (Start)
For k+1 = 2 and n >= k+1 = 2, the n-th element of column k=1 above, [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] (i.e., the number A008619(n-2) = floor(n/2)), gives the number of aperiodic necklaces of n+1 beads of 2 colors such that 2 of them are black and n-1 of them are white. (The offset of sequence A008619 is 0.)
For k+1 = 3 and n >= k+1 = 3, the n-th element of column k=2 above, [0, 0, 1, 2, 3, 5, 7, 9, 12, ...] (i.e., the number A001840(n-2) = floor(C(n,2)/3)), gives the number of aperiodic necklaces of n+1 beads of 2 colors such that 3 of them are black and n-2 of them are white. (The offset of sequence A001840 is 0.)
For k+1 = 5 and n >= k+1 = 5, the n-th element of column k=4 above, [0, 0, 0, 0, 1, 3, 7, 14, 25, 42, ... ] (i.e., the number A011795(n) = floor(C(n,4)/5)), gives the number of aperiodic necklaces of n+1 beads of 2 colors such that 5 of them are black and n-4 of them are white. (The offset of sequence A011795 is 0.)
Counterexample for k+1 = 4: It can be proved that, for n >= k+1 = 4, the number of aperiodic necklaces of n+1 beads of 2 colors such that 4 of them are black and n-3 of them are white is (1/4)*Sum_{d|4} mu(d)*I(d|n+1)*C(floor((n+1)/d) - 1, 4/d - 1) = (1/4)*(C(n, 3) - I(2|n+1)*floor((n-1)/2)), where I(a|b) = 1 if integer a divides integer b, and 0 otherwise. For n odd >= 9, the number (1/4)*(C(n, 3) - I(2|n+1)*floor((n-1)/2)) = A006918(n-3) is not equal to floor(C(n,3)/4) = A011842(n).
(End)
		

Crossrefs

Sums: A095718 (row), A095719 (diagonal).

Programs

  • Magma
    A011847:= func< n,k | Floor(Binomial(n+1,k+1)/(n+1)) >;
    [A011847(n,k): k in [0..n-1], n in [1..20]]; // G. C. Greubel, Oct 20 2024
    
  • Mathematica
    Table[Floor[Binomial[n,k]/(k+1)],{n,20},{k,0,n-1}]//Flatten (* Harvey P. Dale, Jan 09 2019 *)
  • PARI
    A011847(n,k)=binomial(n,k)\(k+1) \\ M. F. Hasler, Sep 30 2018
    
  • SageMath
    def A011847(n,k): return binomial(n+1,k+1)//(n+1)
    flatten([[A011847(n,k) for k in range(n)] for n in range(1,21)]) # G. C. Greubel, Oct 20 2024

Formula

The rows are palindromic: T(n, k) = T(n, n-k-1) for n >= 1 and 0 <= k <= n-1.
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A095719(n). - G. C. Greubel, Oct 20 2024

A127922 1/24 of product of three numbers: n-th prime, previous and following number.

Original entry on oeis.org

1, 5, 14, 55, 91, 204, 285, 506, 1015, 1240, 2109, 2870, 3311, 4324, 6201, 8555, 9455, 12529, 14910, 16206, 20540, 23821, 29370, 38024, 42925, 45526, 51039, 53955, 60116, 85344, 93665, 107134, 111895, 137825, 143450, 161239, 180441, 194054
Offset: 2

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Comments

The product of (n-1), n, and (n+1) = n^3 - n. - Harvey P. Dale, Jan 17 2011
For n > 2, a(n) = A001318(n-2) * A007310(n-1), if A007310(n-1) is prime. Also a(n) is a subsequence of A000330. - Richard R. Forberg, Dec 25 2013
If p is an odd prime it can always be the side length of a leg of a primitive Pythagorean triangle. However it constrains the other leg to have a side length of (p^2-1)/2 and the hypotenuse to have a side length of (p^2+1)/2. The resulting triangle has an area equal to (p-1)*p*(p+1)/4. a(n) is 1/6 the area of such triangles. - Frank M Jackson, Dec 06 2017

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/24, {n, 1, 100}] (#^3-#)/ 24&/@ Prime[Range[2,40]] (* Harvey P. Dale, Jan 17 2011 *)
    ((#-1)#(#+1))/24&/@Prime[Range[2,40]] (* Harvey P. Dale, Jan 20 2023 *)
  • PARI
    for(n=2,25, print1((prime(n)+1)*prime(n)*(prime(n)-1)/24, ", ")) \\ G. C. Greubel, Jun 19 2017

Formula

a(n) = A011842(A000040(n) + 1) = A000330((A000040(n) - 1) / 2).
Showing 1-3 of 3 results.