cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A011857 Triangle of numbers [ C(n,k)/k ], k=1..n-1.

Original entry on oeis.org

2, 3, 1, 4, 3, 1, 5, 5, 3, 1, 6, 7, 6, 3, 1, 7, 10, 11, 8, 4, 1, 8, 14, 18, 17, 11, 4, 1, 9, 18, 28, 31, 25, 14, 5, 1, 10, 22, 40, 52, 50, 35, 17, 5, 1, 11, 27, 55, 82, 92, 77, 47, 20, 6, 1, 12, 33, 73, 123, 158, 154, 113, 61, 24, 6, 1, 13, 39, 95, 178, 257, 286, 245, 160
Offset: 2

Views

Author

Keywords

Crossrefs

Columns include A011848, A011849, A011850, A011851, A011852, A011853, A011854, A011855, A011856. Row sums are in A101687. Cf. A011847.

Programs

  • Mathematica
    Flatten[Table[Floor[Binomial[n,k]/k],{n,20},{k,n-1}]] (* Harvey P. Dale, Apr 19 2015 *)

A011797 a(n) = floor(C(n,6)/7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 4, 12, 30, 66, 132, 245, 429, 715, 1144, 1768, 2652, 3876, 5537, 7752, 10659, 14421, 19228, 25300, 32890, 42287, 53820, 67860, 84825, 105183, 129456, 158224, 192129, 231880, 278256
Offset: 0

Views

Author

Keywords

Comments

a(n-1) is the number of aperiodic necklaces (Lyndon words) with 7 black beads and n-7 white beads.

Crossrefs

Cf. A000031, A001037, A051168. Same as A051172(n+1).
First differences of A011853.
A column of triangle A011847.

Programs

  • Mathematica
    CoefficientList[Series[x^6/7 (1/(1-x)^7-1/(1- x^7)),{x,0,40}],x]; (* Herbert Kociemba, Oct 16 2016 *)
  • PARI
    a(n) = binomial(n, 6)\7; \\ Michel Marcus, Oct 16 2016

Formula

G.f.: (1+x^3)^2/((1-x)^4(1-x^2)^2(1-x^7))*x^7.
a(n) = floor(binomial(n+1,7)/(n+1)). [Gary Detlefs, Nov 23 2011]
G.f.: (x^6/7)*(1/(1-x)^7-1/(1- x^7)). - Herbert Kociemba, Oct 16 2016

A215053 a(n) = 1/7*( binomial(n,7) - floor(n/7) ).

Original entry on oeis.org

1, 5, 17, 47, 113, 245, 490, 919, 1634, 2778, 4546, 7198, 11074, 16611, 24363, 35022, 49443, 68671, 93971, 126861, 169148, 222968, 290828, 375653, 480836, 610292, 768516, 960645, 1192525, 1470781, 1802893, 2197276, 2663365, 3211705, 3854046
Offset: 8

Views

Author

Peter Bala, Aug 01 2012

Keywords

Comments

Not the same as A011853.
Let p be a prime. Saikia and Vogrinc have proved that 1/p*{binomial(n,p) - floor(n/p)} is an integer sequence. The present sequence is the case p = 7. Other cases are A002620 (p = 2), A014125 (p = 3), A215052 (p = 5) and A215054 (p = 11).

Crossrefs

Cf. A002620 (p = 2), A014125 (p = 3), A178904, A215052 (p = 5), A215054 (p = 11).

Programs

  • Magma
    [(Binomial(n, 7)-Floor(n/7))/7: n in [8..50]]; // Vincenzo Librandi, Jun 23 2015
  • Mathematica
    Table[(Binomial[n,7]-Floor[n/7])/7,{n,8,50}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,2,-7,21,-35,35,-21,7,-1},{1,5,17,47,113,245,490,919,1634,2778,4546,7198,11074,16611},40] (* Harvey P. Dale, Dec 23 2014 *)
  • PARI
    a(n) = (binomial(n, 7) - n\7) / 7; \\ Michel Marcus, Jan 23 2014
    

Formula

O.g.f.: sum {n>=0} a(n)*x^n = x^8*(1 - 2*x + 3*x^2 - 2*x^3 + x^4)/((1-x^7)*(1-x)^7) = x^8*(1 + 5*x + 17*x^2 + 47*x^3 + ...). The numerator polynomial 1 - 2*x + 3*x^2 - 2*x^3 + x^4 is the negative of the row generating polynomial for row 7 of A178904.
Showing 1-3 of 3 results.