cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011934 a(n) = |1^3 - 2^3 + 3^3 - 4^3 + ... + (-1)^(n+1)*n^3|.

Original entry on oeis.org

0, 1, 7, 20, 44, 81, 135, 208, 304, 425, 575, 756, 972, 1225, 1519, 1856, 2240, 2673, 3159, 3700, 4300, 4961, 5687, 6480, 7344, 8281, 9295, 10388, 11564, 12825, 14175, 15616, 17152, 18785, 20519, 22356, 24300, 26353, 28519, 30800, 33200, 35721, 38367, 41140
Offset: 0

Views

Author

David Penney (david(AT)math.uga.edu)

Keywords

Comments

From the formula a(n) = n^3 - a(n-1) it follows that a(n-1) + a(n) = n^3. Thus the sum of two consecutive terms (call them the "former" and "latter" terms) is a cube of the index of the "latter" term. - Alexander R. Povolotsky, Jan 09 2008
The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) (A153641) 2^(-n-1)*(P(n,1)-(-1)^k P(n,2*k+1)). Thus we get expression a(k) = |2^(-4)*(P(3,1)-(-1)^k P(3,2*k+1))|. - Peter Luschny, Jul 12 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w < floor((x+y)/2). Also, the number of (w,x,y) having all terms in {0,...,n} and w >= floor((x+y)/2). - Clark Kimberling, Jun 02 2012

References

Crossrefs

Programs

  • Magma
    [((2*n+3)*n^2 - (n mod 2))/4: n in [0..100]]; // G. C. Greubel, Nov 03 2024
    
  • Maple
    a := n -> ((2*n+3)*n^2-(n mod 2))/4; # Peter Luschny, Jul 12 2009
  • Mathematica
    Table[(4*n^3 -6*n^2 +1-(-1)^n)/8, {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    Abs[Accumulate[Times@@@Partition[Riffle[Range[0,50]^3,{1,-1},{1,-1,2}],2]]] (* Harvey P. Dale, May 20 2019 *)
  • SageMath
    [((2*n+3)*n^2 - (n%2))//4 for n in range(101)] # G. C. Greubel, Nov 03 2024

Formula

a(n) = |(1/8)*(-1 + (-1)^n - 6*(-1)^n*n^2 - 4*(-1)^n*n^3)|. - Henry Bottomley, Nov 13 2000
a(n) = n^3 - a(n-1) = a(n-1) + A032528(n) = ceiling(A015238(n+1)/4) = ceiling((n+1)^2*(2*n-1)/4). - Henry Bottomley, Nov 13 2000
G.f.: x*(1 + 4*x + x^2)/(1 - 3*x + 2*x^2 + 2*x^3 - 3*x^4 + x^5). - Alexander R. Povolotsky, Apr 26 2008
a(n) = Sum_{k=1..n} floor((2*n+1)*k/2). - Wesley Ivan Hurt, Apr 01 2017

Extensions

More terms from Henry Bottomley, Nov 13 2000