cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A212959 Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.

Original entry on oeis.org

1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0

Views

Author

Clark Kimberling, Jun 01 2012

Keywords

Comments

In the following guide to related sequences: M=max(x,y,z), m=min(x,y,z), and R=range=M-m. In some cases, it is an offset of the listed sequence which fits the conditions shown for w,x,y. Each sequence satisfies a linear recurrence relation, some of which are identified in the list by the following code (signature):
A: 2, 0, -2, 1, i.e., a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4);
B: 3, -2, -2, 3, -1;
C: 4, -6, 4, -1;
D: 1, 2, -2, -1, 1;
E: 2, 1, -4, 1, 2, -1;
F: 2, -1, 1, -2, 1;
G: 2, -1, 0, 1, -2, 1;
H: 2, -1, 2, -4, 2, -1, 2, -1;
I: 3, -3, 2, -3, 3, -1;
J: 4, -7, 8, -7, 4, -1.
...
A212959 ... |w-x|=|x-y| ...... recurrence type A
A212960 ... |w-x| != |x-y| ................... B
A212683 ... |w-x| < |x-y| .................... B
A212684 ... |w-x| >= |x-y| ................... B
A212963 ... see entry for definition ......... B
A212964 ... |w-x| < |x-y| < |y-w| ............ B
A006331 ... |w-x| < y ........................ C
A005900 ... |w-x| <= y ....................... C
A212965 ... w = R ............................ D
A212966 ... 2*w = R
A212967 ... w < R ............................ E
A212968 ... w >= R ........................... E
A077043 ... w = x > R ........................ A
A212969 ... w != x and x > R ................. E
A212970 ... w != x and x < R ................. E
A055998 ... w = x + y - 1
A011934 ... w < floor((x+y)/2) ............... B
A182260 ... w > floor((x+y)/2) ............... B
A055232 ... w <= floor((x+y)/2) .............. B
A011934 ... w >= floor((x+y)/2) .............. B
A212971 ... w < floor((x+y)/3) ............... B
A212972 ... w >= floor((x+y)/3) .............. B
A212973 ... w <= floor((x+y)/3) .............. B
A212974 ... w > floor((x+y)/3) ............... B
A212975 ... R is even ........................ E
A212976 ... R is odd ......................... E
A212978 ... R = 2*n - w - x
A212979 ... R = average{w,x,y}
A212980 ... w < x + y and x < y .............. B
A212981 ... w <= x+y and x < y ............... B
A212982 ... w < x + y and x <= y ............. B
A212983 ... w <= x + y and x <= y ............ B
A002623 ... w >= x + y and x <= y ............ B
A087811 ... w = 2*x + y ...................... A
A008805 ... w = 2*x + 2*y .................... D
A000982 ... 2*w = x + y ...................... F
A001318 ... 2*w = 2*x + y .................... F
A001840 ... w = 3*x + y
A212984 ... 3*w = x + y
A212985 ... 3*w = 3*x + y
A001399 ... w = 2*x + 3*y
A212986 ... 2*w = 3*x + y
A008810 ... 3*x = 2*x + y .................... F
A212987 ... 3*w = 2*x + 2*y
A001972 ... w = 4*x + y ...................... G
A212988 ... 4*w = x + y ...................... G
A212989 ... 4*w = 4*x + y
A008812 ... 5*w = 2*x + 3*y
A016061 ... n < w + x + y <= 2*n ............. C
A000292 ... w + x + y <=n .................... C
A000292 ... 2*n < w + x + y <= 3*n ........... C
A212977 ... n/2 < w + x + y <= n
A143785 ... w < R < x ........................ E
A005996 ... w < R <= x ....................... E
A128624 ... w <= R <= x ...................... E
A213041 ... R = 2*|w - x| .................... A
A213045 ... R < 2*|w - x| .................... B
A087035 ... R >= 2*|w - x| ................... B
A213388 ... R <= 2*|w - x| ................... B
A171218 ... M < 2*m .......................... B
A213389 ... R < 2|w - x| ..................... E
A213390 ... M >= 2*m ......................... E
A213391 ... 2*M < 3*m ........................ H
A213392 ... 2*M >= 3*m ....................... H
A213393 ... 2*M > 3*m ........................ H
A213391 ... 2*M <= 3*m ....................... H
A047838 ... w = |x + y - w| .................. A
A213396 ... 2*w < |x + y - w| ................ I
A213397 ... 2*w >= |x + y - w| ............... I
A213400 ... w < R < 2*w
A069894 ... min(|w-x|,|x-y|) = 1
A000384 ... max(|w-x|,|x-y|) = |w-y|
A213395 ... max(|w-x|,|x-y|) = w
A213398 ... min(|w-x|,|x-y|) = x ............. A
A213399 ... max(|w-x|,|x-y|) = x ............. D
A213479 ... max(|w-x|,|x-y|) = w+x+y ......... D
A213480 ... max(|w-x|,|x-y|) != w+x+y ........ E
A006918 ... |w-x| + |x-y| > w+x+y ............ E
A213481 ... |w-x| + |x-y| <= w+x+y ........... E
A213482 ... |w-x| + |x-y| < w+x+y ............ E
A213483 ... |w-x| + |x-y| >= w+x+y ........... E
A213484 ... |w-x|+|x-y|+|y-w| = w+x+y
A213485 ... |w-x|+|x-y|+|y-w| != w+x+y ....... J
A213486 ... |w-x|+|x-y|+|y-w| > w+x+y ........ J
A213487 ... |w-x|+|x-y|+|y-w| >= w+x+y ....... J
A213488 ... |w-x|+|x-y|+|y-w| < w+x+y ........ J
A213489 ... |w-x|+|x-y|+|y-w| <= w+x+y ....... J
A213490 ... w,x,y,|w-x|,|x-y| distinct
A213491 ... w,x,y,|w-x|,|x-y| not distinct
A213493 ... w,x,y,|w-x|,|x-y|,|w-y| distinct
A213495 ... w = min(|w-x|,|x-y|,|w-y|)
A213492 ... w != min(|w-x|,|x-y|,|w-y|)
A213496 ... x != max(|w-x|,|x-y|)
A213498 ... w != max(|w-x|,|x-y|,|w-y|)
A213497 ... w = min(|w-x|,|x-y|)
A213499 ... w != min(|w-x|,|x-y|)
A213501 ... w != max(|w-x|,|x-y|)
A213502 ... x != min(|w-x|,|x-y|)
...
A211795 includes a guide for sequences that count 4-tuples (w,x,y,z) having all terms in {0,...,n} and satisfying selected properties. Some of the sequences indexed at A211795 satisfy recurrences that are represented in the above list.
Partial sums of the numbers congruent to {1,3} mod 6 (see A047241). - Philippe Deléham, Mar 16 2014

Examples

			a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
		

References

  • A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
  • P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 50]]   (* A212959 *)
  • PARI
    a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015

Formula

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1+2*x+3*x^2)/((1+x)*(1-x)^3).
a(n) + A212960(n) = (n+1)^3.
a(n) = (6*n^2 + 8*n + 3 + (-1)^n)/4. - Luce ETIENNE, Apr 05 2014
a(n) = 2*A069905(3*(n+1)+2) - 3*(n+1). - Ayoub Saber Rguez, Aug 31 2021

A153641 Nonzero coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent, and Bernoulli numbers (triangle read by rows).

Original entry on oeis.org

1, 1, 1, -1, 1, -3, 1, -6, 5, 1, -10, 25, 1, -15, 75, -61, 1, -21, 175, -427, 1, -28, 350, -1708, 1385, 1, -36, 630, -5124, 12465, 1, -45, 1050, -12810, 62325, -50521, 1, -55, 1650, -28182, 228525, -555731, 1, -66, 2475, -56364, 685575, -3334386, 2702765, 1
Offset: 0

Views

Author

Peter Luschny, Dec 29 2008

Keywords

Comments

In the following the expression [n odd] is 1 if n is odd, 0 otherwise.
(+) W_n(0) = E_n are the Euler (or secant) numbers A122045.
(+) W_n(1) = T_n are the signed tangent numbers, see A009006.
(+) W_{n-1}(1) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli number A027641/A027642.
(+) W_n(-1) 2^{-n}(n+1) = G_n the Genocchi number A036968.
(+) W_n(1/2) 2^{n} are the signed generalized Euler (Springer) number, see A001586.
(+) | W_n([n odd]) | the number of alternating permutations A000111.
(+) | W_n([n odd]) / n! | for 0<=n the Euler zeta number A099612/A099617 (see Wikipedia on Bernoulli number). - Peter Luschny, Dec 29 2008
The diagonals in the full triangle (with zero coefficients) of the polynomials have the general form E(k)*binomial(n+k,k) (k>=0 fixed, n=0,1,...) where E(n) are the Euler numbers in the enumeration A122045. For k=2 we find the triangular numbers A000217 and for k=4 A154286. - Peter Luschny, Jan 06 2009
From Peter Bala, Jun 10 2009: (Start)
The Swiss-Knife polynomials W_n(x) may be expressed in terms of the Bernoulli polynomials B(n,x) as
... W_n(x) = 4^(n+1)/(2*n+2)*[B(n+1,(x+3)/4) - B(n+1,(x+1)/4)].
The Swiss-Knife polynomials are, apart from a multiplying factor, examples of generalized Bernoulli polynomials.
Let X be the Dirichlet character modulus 4 defined by X(4*n+1) = 1, X(4*n+3) = -1 and X(2*n) = 0. The generalized Bernoulli polynomials B(X;n,x), n = 1,2,..., associated with the character X are defined by means of the generating function
... t*exp(x*t)*(exp(t)-exp(3*t))/(exp(4*t)-1) = sum {n = 1..inf} B(X;n,x)*t^n/n!.
The first few values are B(X;1,x) = -1/2, B(X;2,x) = -x, B(X,3,x) = -3/2*(x^2-1) and B(X;4,x) = -2*(x^3-3*x).
In general, W_n(x) = -2/(n+1)*B(X;n+1,x).
For the theory of generalized Bernoulli polynomials associated to a periodic arithmetical function see [Cohen, Section 9.4].
The generalized Bernoulli polynomials may be used to evaluate twisted sums of k-th powers. For the present case the result is
sum{n = 0..4*N-1} X(n)*n^k = 1^k - 3^k + 5^k - 7^k + ... - (4*N-1)^k
= [B(X;k+1,4*N) - B(X;k+1,0)]/(k+1) = [W_k(0) - W_k(4*N)]/2.
For the proof apply [Cohen, Corollary 9.4.17 with m = 4 and x = 0].
The generalized Bernoulli polynomials and the Swiss-Knife polynomials are also related to infinite sums of powers through their Fourier series - see the formula section below. For a table of the coefficients of generalized Bernoulli polynomials attached to a Dirichlet character modulus 8 see A151751.
(End)
The Swiss-Knife polynomials provide a general formula for alternating sums of powers similar to the formula which are provided by the Bernoulli polynomials for non-alternating sums of powers (see the Luschny link). Sequences covered by this formula include A001057, A062393, A062392, A011934, A144129, A077221, A137501, A046092. - Peter Luschny, Jul 12 2009
The greatest common divisor of the nonzero coefficients of the decapitated Swiss-Knife polynomials is exp(Lambda(n)), where Lambda(n) is the von Mangoldt function for odd primes, symbolically:
gcd(coeffs(SKP_{n}(x) - x^n)) = A155457(n) (n>1). - Peter Luschny, Dec 16 2009
Another version is at A119879. - Philippe Deléham, Oct 26 2013

Examples

			1
x
x^2  -1
x^3  -3x
x^4  -6x^2   +5
x^5 -10x^3  +25x
x^6 -15x^4  +75x^2  -61
x^7 -21x^5 +175x^3 -427x
		

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag. [From Peter Bala, Jun 10 2009]

Crossrefs

W_n(k), k=0,1,...
W_0: 1, 1, 1, 1, 1, 1, ........ A000012
W_1: 0, 1, 2, 3, 4, 5, ........ A001477
W_2: -1, 0, 3, 8, 15, 24, ........ A067998
W_3: 0, -2, 2, 18, 52, 110, ........ A121670
W_4: 5, 0, -3, 32, 165, 480, ........
W_n(k), n=0,1,...
k=0: 1, 0, -1, 0, 5, 0, -61, ... A122045
k=1: 1, 1, 0, -2, 0, 16, 0, ... A155585
k=2: 1, 2, 3, 2, -3, 2, 63, ... A119880
k=3: 1, 3, 8, 18, 32, 48, 128, ... A119881
k=4: 1, 4, 15, 52, 165, 484, ........ [Peter Luschny, Jul 07 2009]

Programs

  • Maple
    w := proc(n,x) local v,k,pow,chen; pow := (a,b) -> if a = 0 and b = 0 then 1 else a^b fi; chen := proc(m) if irem(m+1,4) = 0 then RETURN(0) fi; 1/((-1)^iquo(m+1,4) *2^iquo(m,2)) end; add(add((-1)^v*binomial(k,v)*pow(v+x+1,n)*chen(k),v=0..k), k=0..n) end:
    # Coefficients with zeros:
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*sech(t),t,16),t,i),x,i-n),n=0..i)), i=0..8);
    # Recursion
    W := proc(n,z) option remember; local k,p;
    if n = 0 then 1 else p := irem(n+1,2);
    z^n - p + add(`if`(irem(k,2)=1,0,
    W(k,0)*binomial(n,k)*(power(z,n-k)-p)),k=2..n-1) fi end:
    # Peter Luschny, edited and additions Jul 07 2009, May 13 2010, Oct 24 2011
  • Mathematica
    max = 9; rows = (Reverse[ CoefficientList[ #, x]] & ) /@ CoefficientList[ Series[ Exp[x*t]*Sech[t], {t, 0, max}], t]*Range[0, max]!; par[coefs_] := (p = Partition[ coefs, 2][[All, 1]]; If[ EvenQ[ Length[ coefs]], p, Append[ p, Last[ coefs]]]); Flatten[ par /@ rows] (* Jean-François Alcover, Oct 03 2011, after g.f. *)
    sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; Table[CoefficientList[sk[n, x], x] // Reverse // Select[#, # =!= 0 &] &, {n, 0, 13}] // Flatten (* Jean-François Alcover, May 21 2013 *)
    Flatten@Table[Binomial[n, 2k] EulerE[2k], {n, 0, 12}, {k, 0, n/2}](* Oliver Seipel, Jan 14 2025 *)
  • Sage
    def A046978(k):
        if k % 4 == 0:
            return 0
        return (-1)**(k // 4)
    def A153641_poly(n, x):
        return expand(add(2**(-(k // 2))*A046978(k+1)*add((-1)**v*binomial(k,v)*(v+x+1)**n for v in (0..k)) for k in (0..n)))
    for n in (0..7): print(A153641_poly(n, x))  # Peter Luschny, Oct 24 2011

Formula

W_n(x) = Sum_{k=0..n}{v=0..k} (-1)^v binomial(k,v)*c_k*(x+v+1)^n where c_k = frac((-1)^(floor(k/4))/2^(floor(k/2))) [4 not div k] (Iverson notation).
From Peter Bala, Jun 10 2009: (Start)
E.g.f.: 2*exp(x*t)*(exp(t)-exp(3*t))/(1-exp(4*t))= 1 + x*t + (x^2-1)*t^2/2! + (x^3-3*x)*t^3/3! + ....
W_n(x) = 1/(2*n+2)*Sum_{k=0..n+1} 1/(k+1)*Sum_{i=0..k} (-1)^i*binomial(k,i)*((x+4*i+3)^(n+1) - (x+4*i+1)^(n+1)).
Fourier series expansion for the generalized Bernoulli polynomials:
B(X;2*n,x) = (-1)^n*(2/Pi)^(2*n)*(2*n)! * {sin(Pi*x/2)/1^(2*n) - sin(3*Pi*x/2)/3^(2*n) + sin(5*Pi*x/2)/5^(2*n) - ...}, valid for 0 <= x <= 1 when n >= 1.
B(X;2*n+1,x) = (-1)^(n+1)*(2/Pi)^(2*n+1)*(2*n+1)! * {cos(Pi*x/2)/1^(2*n+1) - cos(3*Pi*x/2)/3^(2*n+1) + cos(5*Pi*x/2)/5^(2*n+1) - ...}, valid for 0 <= x <= 1 when n >= 1 and for 0 <= x < 1 when n = 0.
(End)
E.g.f.: exp(x*t) * sech(t). - Peter Luschny, Jul 07 2009
O.g.f. as a J-fraction: z/(1-x*z+z^2/(1-x*z+4*z^2/(1-x*z+9*z^2/(1-x*z+...)))) = z + x*z^2 + (x^2-1)*z^3 + (x^3-3*x)*z^4 + .... - Peter Bala, Mar 11 2012
Conjectural o.g.f.: Sum_{n >= 0} (1/2^((n-1)/2))*cos((n+1)*Pi/4)*( Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - (k + x)*t) ) = 1 + x*t + (x^2 - 1)*t^2 + (x^3 - 3*x)*t^3 + ... (checked up to O(t^13)), which leads to W_n(x) = Sum_{k = 0..n} 1/2^((k - 1)/2)*cos((k + 1)*Pi/4)*( Sum_{j = 0..k} (-1)^j*binomial(k, j)*(j + x)^n ). - Peter Bala, Oct 03 2016

A032528 Concentric hexagonal numbers: floor(3*n^2/2).

Original entry on oeis.org

0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601, 3750
Offset: 0

Views

Author

Keywords

Comments

From Omar E. Pol, Aug 20 2011: (Start)
Cellular automaton on the hexagonal net. The sequence gives the number of "ON" cells in the structure after n-th stage. A007310 gives the first differences. For a definition without words see the illustration of initial terms in the example section. Note that the cells become intermittent. A083577 gives the primes of this sequences.
A033581 and A003154 interleaved.
Row sums of an infinite square array T(n,k) in which column k lists 2*k-1 zeros followed by the numbers A008458 (see example). (End)
Sequence found by reading the line from 0, in the direction 0, 1, ... and the same line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Main axis perpendicular to A045943 in the same spiral. - Omar E. Pol, Sep 08 2011

Examples

			From _Omar E. Pol_, Aug 20 2011: (Start)
Using the numbers A008458 we can write:
  0, 1, 6, 12, 18, 24, 30, 36, 42,  48,  54, ...
  0, 0, 0,  1,  6, 12, 18, 24, 30,  36,  42, ...
  0, 0, 0,  0,  0,  1,  6, 12, 18,  24,  30, ...
  0, 0, 0,  0,  0,  0,  0,  1,  6,  12,  18, ...
  0, 0, 0,  0,  0,  0,  0,  0,  0,   1,   6, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, ...
...
Illustration of initial terms as concentric hexagons:
.
.                                         o o o o o
.                         o o o o        o         o
.             o o o      o       o      o   o o o   o
.     o o    o     o    o   o o   o    o   o     o   o
. o  o   o  o   o   o  o   o   o   o  o   o   o   o   o
.     o o    o     o    o   o o   o    o   o     o   o
.             o o o      o       o      o   o o o   o
.                         o o o o        o         o
.                                         o o o o o
.
. 1    6        13           24               37
.
(End)
		

Crossrefs

Programs

Formula

From Joerg Arndt, Aug 22 2011: (Start)
G.f.: (x+4*x^2+x^3)/(1-2*x+2*x^3-x^4) = x*(1+4*x+x^2)/((1+x)*(1-x)^3).
a(n) = +2*a(n-1) -2*a(n-3) +1*a(n-4). (End)
a(n) = (6*n^2+(-1)^n-1)/4. - Bruno Berselli, Aug 22 2011
a(n) = A184533(n), n >= 2. - Clark Kimberling, Apr 20 2012
First differences of A011934: a(n) = A011934(n) - A011934(n-1) for n>0. - Franz Vrabec, Feb 17 2013
From Paul Curtz, Mar 31 2019: (Start)
a(-n) = a(n).
a(n) = a(n-2) + 6*(n-1) for n > 1.
a(2*n) = A033581(n).
a(2*n+1) = A003154(n+1). (End)
E.g.f.: (3*x*(x + 1)*cosh(x) + (3*x^2 + 3*x - 1)*sinh(x))/2. - Stefano Spezia, Aug 19 2022
Sum_{n>=1} 1/a(n) = Pi^2/36 + tan(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Jan 16 2023

Extensions

New name and more terms a(41)-a(50) from Omar E. Pol, Aug 20 2011

A062392 a(n) = n^4 - (n-1)^4 + (n-2)^4 - ... 0^4.

Original entry on oeis.org

0, 1, 15, 66, 190, 435, 861, 1540, 2556, 4005, 5995, 8646, 12090, 16471, 21945, 28680, 36856, 46665, 58311, 72010, 87990, 106491, 127765, 152076, 179700, 210925, 246051, 285390, 329266, 378015, 431985, 491536, 557040, 628881, 707455, 793170, 886446, 987715
Offset: 0

Views

Author

Henry Bottomley, Jun 21 2001

Keywords

Comments

Number of edges in the join of two complete graphs of order n^2 and n, K_n^2 * K_n. - Roberto E. Martinez II, Jan 07 2002
The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-5)(P(4,1)-(-1)^k P(4,2k+1))|. - Peter Luschny, Jul 12 2009
Define an infinite symmetric array by T(n,m) = n*(n-1) + m for 0 <= m <= n and T(n,m) = T(m,n), n >= 0. Then a(n) is the sum of terms in the top left (n+1) X (n+1) subarray: a(n) = Sum_{r=0..n} Sum_{c=0..n} T(r,c). - J. M. Bergot, Jul 05 2013
a(n) is the sum of all positive numbers less than A002378(n). - J. M. Bergot, Aug 30 2013
Except the first term, these are triangular numbers that remain triangular when divided by their index, e.g., 66 divided by 11 gives 6. - Waldemar Puszkarz, Sep 14 2017
a(n) is the semiperimeter of the unique primitive Pythagorean triple such that (a-b+c)/2 = T(n) = A000217(n). Its long leg and hypotenuse are consecutive natural numbers and the triple is (2*T(n) - 1, 2*T(n)*(T(n) - 1), 2*T(n)*(T(n) - 1) + 1). - Miguel-Ángel Pérez García-Ortega, May 27 2025

Examples

			From _Bruno Berselli_, Oct 30 2017: (Start)
After 0:
1   =                 -(1) + (2);
15  =             -(1 + 2) + (3 + 4 + 5 + 2*3);
66  =         -(1 + 2 + 3) + (4 + 5 + 6 + 7 + ... + 11 + 3*4);
190 =     -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 19 + 4*5);
435 = -(1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 29 + 5*6), etc. (End)
		

References

  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Cf. A000538, A000583. A062393 provides the result for 5th powers, A011934 for cubes, A000217 for squares, A001057 (unsigned) for nonnegative integers, A000035 (offset) for 0th powers.
Cf. A236770 (see crossrefs).

Programs

  • Maple
    a := n -> (2*n^2+n^3-1)*n/2; # Peter Luschny, Jul 12 2009
  • Mathematica
    Table[n (n + 1) (n^2 + n - 1)/2, {n, 0, 40}] (* Harvey P. Dale, Oct 19 2011 *)
  • PARI
    { a=0; for (n=0, 1000, write("b062392.txt", n, " ", a=n^4 - a) ) } \\ Harry J. Smith, Aug 07 2009

Formula

a(n) = n*(n+1)*(n^2 + n - 1)/2 = n^4 - a(n-1) = A000583(n) - a(n-1) = A000217(A028387(n-1)) = A000217(n)*A028387(n-1).
a(n) = Sum_{i=0..n} A007588(i) for n > 0. - Jonathan Vos Post, Mar 15 2006
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Oct 19 2011
G.f.: x*(x*(x + 10) + 1)/(1 - x)^5. - Harvey P. Dale, Oct 19 2011
a(n) = A000384(A000217(n)). - Bruno Berselli, Jan 31 2014
a(n) = A110450(n) - A002378(n). - Gionata Neri, May 13 2015
Sum_{n>=1} 1/a(n) = tan(sqrt(5)*Pi/2)*2*Pi/sqrt(5). - Amiram Eldar, Jan 22 2024
a(n) = sqrt(144*A288876(n-2) + 72*A006542(n+2) + A000537(n)). - Yasser Arath Chavez Reyes, Jul 22 2024
E.g.f.: exp(x)*x*(2 + 13*x + 8*x^2 + x^3)/2. - Stefano Spezia, Apr 27 2025
a(n) = A000217(n)*(2*A000217(n)-1). - Miguel-Ángel Pérez García-Ortega, May 27 2025

A232599 Alternating sum of cubes, i.e., Sum_{k=0..n} k^p*q^k for p=3, q=-1.

Original entry on oeis.org

0, -1, 7, -20, 44, -81, 135, -208, 304, -425, 575, -756, 972, -1225, 1519, -1856, 2240, -2673, 3159, -3700, 4300, -4961, 5687, -6480, 7344, -8281, 9295, -10388, 11564, -12825, 14175, -15616, 17152, -18785, 20519
Offset: 0

Views

Author

Stanislav Sykora, Nov 26 2013

Keywords

Examples

			a(3) = 0^3 - 1^3 + 2^3 - 3^3 = -20.
		

Crossrefs

Cf. A000578 (cubes), A011934 (absolute values), A059841 (p=0,q=-1), A130472 (p=1,q=-1), A089594 (p=2,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), A036827 (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232601 (p=2,q=-2), A232602 (p=3,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2).

Programs

  • Magma
    [(1 - (-1)^n*(1 -6*n^2 -4*n^3))/8: n in [0..30]]; // G. C. Greubel, Mar 31 2021
    
  • Maple
    A232599:= n-> (1 -(-1)^n*(1 -6*n^2 -4*n^3))/8; seq(A232599(n), n=0..30); # G. C. Greubel, Mar 31 2021
  • Mathematica
    Accumulate[Times@@@Partition[Riffle[Range[0,40]^3,{1,-1},{2,-1,2}],2]] (* Harvey P. Dale, Jul 22 2016 *)
  • PARI
    S3M1(n)=((-1)^n*(4*n^3+6*n^2-1)+1)/8;
    v = vector(10001);for(k=1,#v,v[k]=S3M1(k-1))
    
  • Sage
    [(1 - (-1)^n*(1 -6*n^2 -4*n^3))/8 for n in (0..30)] # G. C. Greubel, Mar 31 2021

Formula

a(n) = ((-1)^n*(4*n^3+6*n^2-1) +1)/8.
G.f.: (-x)*(1-4*x+x^2) / ( (1-x)*(1+x)^4 ). - R. J. Mathar, Nov 23 2014
E.g.f.: (exp(x) - (1 +10*x -18*x^2 +4*x^3)*exp(-x))/8. - G. C. Greubel, Mar 31 2021
a(n) = - 3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5). - Wesley Ivan Hurt, Mar 31 2021

A105636 Transform of n^3 by the Riordan array (1/(1-x^2), x).

Original entry on oeis.org

0, 1, 8, 28, 72, 153, 288, 496, 800, 1225, 1800, 2556, 3528, 4753, 6272, 8128, 10368, 13041, 16200, 19900, 24200, 29161, 34848, 41328, 48672, 56953, 66248, 76636, 88200, 101025, 115200, 130816, 147968, 166753, 187272, 209628, 233928, 260281, 288800, 319600
Offset: 0

Views

Author

Paul Barry, Apr 16 2005

Keywords

Comments

Recurrence a(n) = a(n-2) + n^3, starting with a(0)=0, a(1)=1. Also, in physics, a(n)/4 is the trace of the spin operator |S_z|^3 for a particle with spin S=n/2. For example, when S=3/2, the S_z eigenvalues are -3/2, -1/2, +1/2, +3/2 and therefore the sum of the absolute values of their 3rd powers is 2*28/8 = a(3)/4. - Stanislav Sykora, Nov 07 2013
Also the number of 3-cycles in the (n+1)-triangular honeycomb queen graph. - Eric W. Weisstein, Jul 14 2017
With zero prepended and offset 1, the sequence starts 0,0,1,8,28,... for n=1,2,3,... Call this b(n). Consider the partitions of n into two parts (p,q). Then b(n) is the total volume of the family of cubes with side length |q - p|. - Wesley Ivan Hurt, Apr 14 2018

Crossrefs

Cf. A289705 (4-cycles), A289706 (5-cycles), A289707 (6-cycles).

Programs

  • GAP
    List([0..30], n -> (2*n^4 +8*n^3 +8*n^2 -1+(-1)^n)/16); # G. C. Greubel, Dec 16 2018
  • Magma
    [(2*n^4+8*n^3+8*n^2-1)/16+(-1)^n/16: n in [0..50]]; // Vincenzo Librandi, Oct 27 2014
    
  • Mathematica
    LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 1, 8, 28, 72, 153}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
    CoefficientList[Series[x (1 + 4 x + x^2)/((1 + x) (1 - x)^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 26 2012 *)
    Table[((-1)^n + 2 n^2 (n + 2)^2 - 1)/16, {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x*(1+4*x+x^2)/((1+x)*(1-x)^5))) \\ Altug Alkan, Apr 16 2018
    
  • Sage
    [(2*n^4 +8*n^3 +8*n^2 -1+(-1)^n)/16 for n in range(30)] # G. C. Greubel, Dec 16 2018
    

Formula

G.f.: x*(1+4*x+x^2)/((1+x)*(1-x)^5).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
a(n) = (2*n^4 + 8*n^3 + 8*n^2 - 1 + (-1)^n)/16.
a(n) = Sum_{k=0..floor((n-1)/2)} (n-2*k)^3.
a(n+1) = Sum_{k=0..n} k^3*(1 - (-1)^(n+k-1))/2.
a(n) = ((((x^2 - (x mod 2) - 4)/4)^2 - (((x^2 - (x mod 2) - 4)/4) mod 2))/8) = floor(((floor(x^2/4) - 1)^2)/8) where x = 2*n + 2. Replace x with 2*n - 1 to obtain A050534(n) = 3*A000332(n+1). Note that a(2*n) = A060300(n)/2 and a(2*n + 1) = A002593(n+1). - Raphie Frank, Jan 30 2014
a(n) = floor(1/(exp(2/n^2) - 1)^2)/2. Also a(n) = A007590(n+1)*A074148(n-1)/2. - Richard R. Forberg, Oct 26 2014
Sum_{n>=1} 1/a(n) = -cot(Pi/sqrt(2))*Pi/sqrt(2) - 1/2. - Amiram Eldar, Aug 25 2022

A152725 a(n) = n*(n+1)*(n^4 + 2*n^3 - 2*n^2 - 3*n + 3)/2.

Original entry on oeis.org

0, 1, 63, 666, 3430, 12195, 34461, 83188, 178956, 352485, 647515, 1124046, 1861938, 2964871, 4564665, 6825960, 9951256, 14186313, 19825911, 27219970, 36780030, 48986091, 64393813, 83642076, 107460900, 136679725, 172236051, 215184438
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A062392, A062393 (for 5th powers), A011934, A152726 (for 7th powers).

Programs

  • Magma
    [n*(n+1)*(n^4+2*n^3-2*n^2-3*n+3)/2: n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    k=0;lst={k};Do[k=n^6-k;AppendTo[lst,k],{n,1,5!}];lst
    LinearRecurrence[{7,-21,35,-35,21,-7,1}, {0,1,63,666,3430,12195,34461}, 50] (* G. C. Greubel, Sep 01 2018 *)
    CoefficientList[Series[-((x (1+56 x+246 x^2+56 x^3+x^4))/(-1+x)^7),{x,0,30}],x] (* Harvey P. Dale, Aug 03 2024 *)
  • PARI
    a(n)=n*(n+1)*(n^4+2*n^3-2*n^2-3*n+3)/2 \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

a(n) = n^6 - (n-1)^6 + (n-2)^6 - ... + ((-1)^n)*0^6.
G.f.: x*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1-x)^7. - R. J. Mathar, Jul 08 2013
a(n) = A050492(A000217(n)). - Kelvin Voskuijl, Jun 18 2025
E.g.f.: exp(x)*x*(2 + 61*x + 160*x^2 + 95*x^3 + 18*x^4 + x^5)/2. - Stefano Spezia, Jun 19 2025

Extensions

Offset set to 0 by R. J. Mathar, Aug 15 2010

A175428 a(n) is the smallest positive integer such that a(n)+a(n-1) is a cube and a(n) is not in {a(1), ..., a(n-1)}.

Original entry on oeis.org

1, 7, 20, 44, 81, 135, 208, 8, 19, 45, 80, 136, 207, 9, 18, 46, 79, 137, 206, 10, 17, 47, 78, 138, 205, 11, 16, 48, 77, 139, 204, 12, 15, 49, 76, 140, 203, 13, 14, 50, 75, 141, 202, 310, 33, 31, 94, 122, 3, 5, 22, 42, 83, 133, 210, 6, 2, 25, 39, 86, 130, 213, 299, 430, 82
Offset: 1

Views

Author

John W. Layman, May 10 2010

Keywords

Comments

It appears that this is a permutation of the positive integers. 4 occurs as a(149).
See A034175 for the case where a(n)+a(n-1) is a square.
The parity of a(n) equals A133872(n) until n=56 after which there are occasional deviations from the pattern. This is clearly shown by considering the run lengths of the parity for this sequence: 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,1,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,1,2,2,2,1,2,2,3,2,1,2,2,2,3,2,2,2,2,2,2,1,2,2,2,1,2,3,2,2,2,3,2,2,1,2,2,1,... - Jeremy Gardiner, Feb 16 2014

Crossrefs

Cf. A034175, A011934, A000578 (the cubes), A133872.

Programs

  • Mathematica
    a = {1}; For[i = 2, i < 66, i++, k = 1; While[! IntegerQ@ Power[k + a[[i - 1]] && ! MemberQ[a, k], 1/3], k++]; AppendTo[a, k]]; a (* Michael De Vlieger, Jun 02 2015 *)
  • PARI
    v=[1];n=1;while(n<10^3,if(ispower((v[#v]+n),3)&&!vecsearch(vecsort(v),n),v=concat(v,n);n=0);n++);v \\ Derek Orr, Jun 01 2015

A008670 Molien series for Weyl group F_4.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 6, 7, 9, 11, 12, 16, 18, 20, 24, 28, 30, 36, 40, 44, 50, 56, 60, 69, 75, 81, 90, 99, 105, 117, 126, 135, 147, 159, 168, 184, 196, 208, 224, 240, 252, 272, 288, 304, 324, 344, 360, 385, 405, 425, 450, 475, 495, 525, 550, 575, 605, 635, 660, 696, 726, 756
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 3, 4 and 6. - Ilya Gutkovskiy, May 24 2017

References

  • Coxeter and Moser, Generators and Relations for Discrete Groups, Table 10.
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 28).

Crossrefs

Programs

  • Magma
    MolienSeries(CoxeterGroup("F4")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 08 2019
    
  • Maple
    a:= proc(n) local m, r; m := iquo (n, 12, 'r'); r:= r+1; ([4, 5, 6, 8, 10, 11, 14, 16, 18, 21, 24, 26][r]+ (6+r+4*m)*m)*m+ [1$3, 2, 3$2, 5, 6, 7, 9, 11, 12][r] end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 06 2008
  • Mathematica
    Take[CoefficientList[Series[1/((1-x^2)(1-x^6)(1-x^8)(1-x^12)),{x,0,130}], x], {1,-1,2}] (* or *) LinearRecurrence[ {1,0,1,0,-1,1,-2,1,-1,0,1,0,1,-1},{1,1,1,2,3,3,5,6,7,9,11,12,16,18},70] (* Harvey P. Dale, Feb 07 2012 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))) \\ G. C. Greubel, Sep 08 2019
    
  • Sage
    def A008670_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))).list()
    A008670_list(70) # G. C. Greubel, Sep 08 2019

Formula

G.f.: 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)). [Corrected by Ralf Stephan, Apr 29 2014]
a(n) = a(n-1) + a(n-3) - a(n-5) + a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) + a(n-11) + a(n-13) - a(n-14), with a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=3, a(6)=5, a(7)=6, a(8)=7, a(9)=9, a(10)=11, a(11)=12, a(12)=16, a(13)=18. - Harvey P. Dale, Feb 07 2012
a(n) ~ (1/432)*n^3. - Ralf Stephan, Apr 29 2014
a(n) = (120*floor(n/6)^3 + 60*(m+7)*floor(n/6)^2 + 2*(m^5-15*m^4+75*m^3-135*m^2+134*m+240)*floor(n/6) + 3*(m^5-15*m^4+75*m^3-135*m^2+84*m+70) + (m^5-15*m^4+75*m^3-135*m^2+44*m+30)*(-1)^floor(n/6))/240 where m = (n mod 6). - Luce ETIENNE, Aug 14 2018
a(n) = 1 + floor((2*n^3 + 42*n^2 + n*(279 + 9*(-1)^n - 48*[(n mod 3)=2]))/864) where [] is the Iverson bracket. - Hoang Xuan Thanh, Jun 22 2025

A059341 Triangle giving numerators of coefficients of Euler polynomials, highest powers first.

Original entry on oeis.org

1, 1, -1, 1, -1, 0, 1, -3, 0, 1, 1, -2, 0, 1, 0, 1, -5, 0, 5, 0, -1, 1, -3, 0, 5, 0, -3, 0, 1, -7, 0, 35, 0, -21, 0, 17, 1, -4, 0, 14, 0, -28, 0, 17, 0, 1, -9, 0, 21, 0, -63, 0, 153, 0, -31, 1, -5, 0, 30, 0, -126, 0, 255, 0, -155, 0, 1, -11, 0, 165, 0, -231, 0, 2805, 0, -1705, 0, 691, 1, -6, 0, 55, 0, -396, 0, 1683, 0, -3410, 0, 2073, 0, 1, -13
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Examples

			1; x-1/2; x^2-x; x^3-3*x^2/2+1/4; ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14b].

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do for k from n to 0 by -1 do printf(`%d,`,numer(coeff(euler(n,x), x, k))) od:od:
  • Mathematica
    Numerator[Table[Reverse[CoefficientList[Series[EulerE[n, x], {x, 0, 20}], x]], {n, 0, 10}]]//Flatten (* G. C. Greubel, Jan 07 2017 *)

Extensions

More terms from James Sellers, Jan 29 2001
Showing 1-10 of 13 results. Next