A011971 Aitken's array: triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} read by rows, defined by a(0,0)=1, a(n,0) = a(n-1,n-1), a(n,k) = a(n,k-1) + a(n-1,k-1).
1, 1, 2, 2, 3, 5, 5, 7, 10, 15, 15, 20, 27, 37, 52, 52, 67, 87, 114, 151, 203, 203, 255, 322, 409, 523, 674, 877, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147, 21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828, 115975
Offset: 0
Examples
Triangle begins: 00: 1 01: 1 2 02: 2 3 5 03: 5 7 10 15 04: 15 20 27 37 52 05: 52 67 87 114 151 203 06: 203 255 322 409 523 674 877 07: 877 1080 1335 1657 2066 2589 3263 4140 08: 4140 5017 6097 7432 9089 11155 13744 17007 21147 09: 21147 25287 30304 36401 43833 52922 64077 77821 94828 115975 10: 115975 137122 162409 192713 229114 272947 325869 389946 467767 562595 678570 ...
References
- Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 205.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 212.
- Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 418).
- Charles Sanders Peirce, On the Algebra of Logic, American Journal of Mathematics, Vol. 3, pages 15-57, 1880. Reprinted in Collected Papers (1935-1958) and in Writings of Charles S. Peirce: A Chronological Edition (Indiana University Press, Bloomington, IN, 1986).
- Jeffrey Shallit, A triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
Links
- T. D. Noe and Chai Wah Wu, Rows n = 0..200 of triangle, flattened (rows n = 0..50 from T. D. Noe)
- Alexander Craig Aitken, A problem in combinations, Edinburgh Mathematical Notes, Vol. 28 (1933), pp. xviii-xxiii.
- H. W. Becker, Rooks and rhymes, Math. Mag., Vol. 22, No. 1 (1948/49), pp. 23-26. See Table IV.
- H. W. Becker, Rooks and rhymes, Math. Mag., Vol. 22, No. 1 (1948/49), pp. 23-26. [Annotated scanned copy]
- Antonio Bernini, Mathilde Bouvel and Luca Ferrari, Some statistics on permutations avoiding generalized patterns, PU.M.A. Vol. 18, No. 3-4 (2007), pp. 223-237 (see array p. 228).
- Clarence H. Best, Jerry Griggs, and Ira Gessel, Partitions of finite sets, Advanced Problem 6151, The American Mathematical Monthly, Vol. 86, No. 1 (Jan., 1979), pp. 64-65.
- Robert W. Donley, Jr., Binomial arrays and generalized Vandermonde identities, arXiv:1905.01525 [math.CO], 2019.
- Martin Cohn, Shimon Even, Karl Menger, Jr. and Philip K. Hooper, On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly, Vol. 69, No. 8 (1962), pp. 782-785. MR1531841.
- Martin Cohn, Shimon Even, Karl Menger, Jr. and Philip K. Hooper, On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly Vol. 69, No. 8 (1962), pp. 782-785. MR1531841. [Annotated scanned copy]
- Dominique Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968.
- Nick Hobson, Python program for this sequence.
- Don Knuth, Email to N. J. A. Sloane, Jan 29 2018.
- Charles Sanders Peirce, Assorted Papers.
- Charles Sanders Peirce, Collected Papers.
- Charles Sanders Peirce, Published Works.
- Jeffrey Shallit, A triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
- Todd Tichenor, Bounds on graph compositions and the connection to the Bell triangle, Discr. Math., Vol. 339, No. 4 (2016), pp. 1419-1423.
- Eric Weisstein's World of Mathematics, Bell Triangle.
- Denys Wuilquin, Letters to N. J. A. Sloane, August 1984.
Crossrefs
Programs
-
GAP
T:=Flat(List([0..9],n->List([0..n],k->Sum([0..k],i->Binomial(k,i)*Bell(n-k+i))))); # Muniru A Asiru, Oct 26 2018
-
Haskell
a011971 n k = a011971_tabl !! n !! k a011971_row n = a011971_tabl !! n a011971_tabl = iterate (\row -> scanl (+) (last row) row) [1] -- Reinhard Zumkeller, Dec 09 2012
-
Maple
A011971 := proc(n,k) option remember; if n=0 and k=0 then 1 elif k=0 then A011971(n-1,n-1) else A011971(n,k-1)+A011971(n-1,k-1); fi: end; for n from 0 to 12 do lprint([ seq(A011971(n,k),k=0..n) ]); od: # Compare the analogue algorithm for the Catalan numbers in A030237. BellTriangle := proc(len) local P, T, n; P := [1]; T := [[1]]; for n from 1 to len - 1 do P := ListTools:-PartialSums([P[-1], op(P)]); T := [op(T), P] od; T end: BellTriangle(6); ListTools:-Flatten(%); # Peter Luschny, Mar 26 2022
-
Mathematica
a[0, 0] = 1; a[n_, 0] := a[n, 0] = a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; Flatten[ Table[ a[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, Mar 27 2004 *) Flatten[Table[Sum[Binomial[k, i]*BellB[n-k+i], {i, 0, k}], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, May 24 2016, after Vladeta Jovovic *)
-
Python
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs. from itertools import accumulate A011971 = blist = [1] for _ in range(10**2): b = blist[-1] blist = list(accumulate([b]+blist)) A011971 += blist # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 19 2014
Formula
Double-exponential generating function: Sum_{n, k} a(n-k, k) x^n y^k / n! k! = exp(e^{x+y}-1+x). - Don Knuth, Sep 21 2002 [U coordinates, reversed]
a(n,k) = Sum_{i=0..k} binomial(k,i)*Bell(n-k+i). - Vladeta Jovovic, Oct 15 2006
Extensions
Peirce reference from Jon Awbrey, Mar 11 2002
Reference to my paper from Jeffrey Shallit, Jan 23 2015
Moved a comment to A056857 where it belonged. - N. J. A. Sloane, May 02 2015.
Comments