cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060307 Number of degree-4n permutations without odd cycles and such that number of cycles of size 2k is even (or zero) for every k.

Original entry on oeis.org

1, 3, 1365, 8534295, 204893714025, 15735481638151275, 2760485970394430603325, 1006427270776555103089989375, 659316841888260316767029819420625, 740198799422691022278446846884066321875, 1306298536067264588818106780684613899555353125
Offset: 0

Views

Author

Vladeta Jovovic, Mar 28 2001, Aug 10 2007

Keywords

Crossrefs

Cf. A003483.
Cf. A013302.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=0 or irem(i, 2)=0 and irem(j, 2)=0, multinomial(n,
           n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(4*n$2):
    seq(a(n), n=0..15);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    nn = 40; Select[Range[0, nn]! CoefficientList[Series[Product[Cosh[x^(2 i)/(2 i)], {i, 1, nn}], {x, 0, nn}], x], # > 0 &] (* Geoffrey Critzer, Jan 16 2012 *)

Formula

E.g.f.: Product_{k >= 1} cosh x^(2k)/(2k).

A013299 -sinh(log(x+1)-arctanh(x)) = 1/2!*x^2 + 6/4!*x^4 + 135/6!*x^6 + 6300/8!*x^8 + ...

Original entry on oeis.org

1, 6, 135, 6300, 496125, 58939650, 9833098275, 2191376187000, 628651043645625, 225615874552818750, 99022807341232149375, 52176017395434685252500, 32501310835906189355203125
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

Number of degree-2n permutations without odd cycles and with odd number of even cycles, offset 1. E.g.f.: x^2/(2*sqrt(1-x^2)). - Vladeta Jovovic, Aug 10 2007

Crossrefs

Cf. A013302.

Programs

  • Mathematica
    nn = 30; Select[Range[0, nn]! CoefficientList[Series[Sinh[Log[1/(1 - x^2)^(1/2)]], {x, 0, nn}], x], # > 0 &]  (* Geoffrey Critzer, Jan 15 2012 *)
    With[{nn=30},Take[-CoefficientList[Series[Sinh[Log[x+1]-ArcTanh[x]], {x,0,nn}], x] Range[0,nn]!, {3,-1,2}]] (* Harvey P. Dale, Oct 30 2013 *)

Formula

a(n) ~ (2*n)^(2*n+2)/exp(2*n). - Vaclav Kotesovec, Oct 24 2013
Showing 1-2 of 2 results.